Immunogenicity and Safety of an Inactivated SARS-CoV-2 Vaccine: Preclinical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine Seed Strain and Cells
2.2. Virus Propagation, Titration, and Antigen Preparation
2.3. Analysis of Viral Antigen
2.4. Preparation of NRC-VACC-01 Inactivated Candidate Vaccine
2.5. Immunogenicity Studies of the Candidate Vaccine
2.6. Viral Microneutralization Assay
2.7. Detection of Total Specific Antibodies in Rat Sera Using ELISA
2.8. Challenge Infection of Hamsters
2.9. Safety Evaluation of NRC-VACC-01 Inactivated Candidate Vaccine in Rats
2.10. Blood Analysis
2.11. Histopathological Examinations
2.12. Effect of Repeated Doses of Inactivated NRC-VACC-01 Vaccine in Mice
2.13. Ethical Approval
2.14. Statistical Analysis
3. Results
3.1. Virus Isolation, Propagation, and Characterization
3.2. Analysis of Viral Antigen
3.3. Immunogenicity of NRC-VACC-01 in Different Animal Models
3.3.1. Mice and Hamsters
3.3.2. Guinea Pigs
3.3.3. Rats
3.4. Blood Analysis of Vaccinated Rats
3.5. Clinical Assessment Findings
3.6. Effect of Repeated Doses of Inactivated NRC-VACC-01 Vaccine in Mice
3.7. Challenge Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ICTV. Virus Taxonomy. Available online: http://ictvonline.org/virusTaxonomy.asp: (accessed on 1 January 2019).
- Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 77–81. [Google Scholar] [CrossRef]
- Tostanoski, L.H.; Wegmann, F.; Martinot, A.J.; Loos, C.; McMahan, K.; Mercado, N.B.; Yu, J.; Chan, C.N.; Bondoc, S.; Starke, C.E.; et al. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat. Med. 2020, 26, 1694–1700. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Huang, B.; Deng, W.; Quan, Y.; Wang, W.; Xu, W.; Zhao, Y.; Li, N.; Zhang, J.; et al. Development of an inactivated vaccine candidate, bbibp-corv, with potent protection against sars-cov-2. Cell 2020, 182, 713–721.e719. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, M.R.; Kandeil, A.; Mostafa, A.; Roshdy, W.H.; Kayed, A.E.; Shehata, M.; Kutkat, O.; Moatasim, Y.; El Taweel, A.; Mahmoud, S.H.; et al. Prevalence of Severe Acute Respiratory Syndrome Coronavirus 2 Neutralizing Antibodies in Egyptian Convalescent Plasma Donors. Front. Microbiol. 2020, 11, 596851. [Google Scholar] [CrossRef]
- Wellington, D.; Mikaelian, I.; Singer, L. Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2013, 52, 481–487. [Google Scholar]
- Kajon, A.E.; Gigliotti, A.P.; Harrod, K.S. Acute inflammatory response and remodeling of airway epithelium after subspecies B1 human adenovirus infection of the mouse lower respiratory tract. J. Med. Virol. 2003, 71, 233–244. [Google Scholar] [CrossRef]
- Amanat, F.; Krammer, F. SARS-CoV-2 Vaccines: Status Report. Immunity 2020, 52, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Barrett, P.N.; Terpening, S.J.; Snow, D.; Cobb, R.R.; Kistner, O. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev. Vaccines 2017, 16, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Harcourt, J.; Tamin, A.; Lu, X.; Kamili, S.; Sakthivel, S.K.; Murray, J.; Queen, K.; Tao, Y.; Paden, C.R.; Zhang, J.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States. Emerg. Infect. Dis. 2020, 26, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.; Lamirande, E.W.; Vogel, L.; Baras, B.; Goossens, G.; Knott, I.; Chen, J.; Ward, J.M.; Vassilev, V.; Subbarao, K. Immunogenicity and protective efficacy in mice and hamsters of a beta-propiolactone inactivated whole virus SARS-CoV vaccine. Viral Immunol. 2010, 23, 509–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, P.; Topno, R.; Khan, S.A.; Mahanta, J. Comparison of beta-Propiolactone and Formalin Inactivation on Antigenicity and Immune Response of West Nile Virus. Adv. Virol. 2015, 2015, 616898. [Google Scholar] [CrossRef] [Green Version]
- Kohl, K.S.; Marcy, S.M.; Blum, M.; Connell Jones, M.; Dagan, R.; Hansen, J.; Nalin, D.; Rothstein, E.; Brighton Collaboration Fever Working Group. Fever after immunization: Current concepts and improved future scientific understanding. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2004, 39, 389–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, T. An inflammatory response is essential for the development of adaptive immunity-immunogenicity and immunotoxicity. Vaccine 2016, 34, 5815–5818. [Google Scholar] [CrossRef]
- Tapiainen, T.; Heininger, U. Fever following immunization. Expert Rev. Vaccines 2005, 4, 419–427. [Google Scholar] [CrossRef]
- Herve, C.; Laupeze, B.; Del Giudice, G.; Didierlaurent, A.M.; Da Silva, F.T. The how’s and what’s of vaccine reactogenicity. NPJ Vaccines 2019, 4, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brill-Edwards, P.; Lee, A. D-dimer testing in the diagnosis of acute venous thromboembolism. Thromb. Haemost. 1999, 82, 688–694. [Google Scholar] [PubMed]
- Kulacoglu, H.; Kocaerkek, Z.; Moran, M.; Kulah, B.; Atay, C.; Kulacoglu, S.; Ozmen, M.; Coskun, F. Diagnostic value of blood D-dimer level in acute mesenteric ischaemia in the rat: An experimental study. Asian J. Surg. 2005, 28, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, O.P.; Lichtnekert, J.; Anders, H.J.; Mulay, S.R. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation? Mediat. Inflamm. 2016, 2016, 2856213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowiec, A.; Dabrowski, R.; Kowalik, I.; Rusinowicz, T.; Hadzik-Blaszczyk, M.; Krupa, R.; Zycinska, K. Elevated levels of d-dimer are associated with inflammation and disease activity rather than risk of venous thromboembolism in patients with granulomatosis with polyangiitis in long term observation. Adv. Med Sciences 2020, 65, 97–101. [Google Scholar] [CrossRef]
- Bao, W.; Qi, X.; Li, H.; Hou, F.; Zhang, X.; Wang, R.; Guo, X. Correlation of D-dimer level with the inflammatory conditions: A retrospective study. AME Med. J. 2017, 2, 27–35. [Google Scholar] [CrossRef]
- Smit, P.M.; Veldhuis, S.; Mulder, J.W.; Roggeveen, C.; Rimmelzwaan, G.F.; Meijers, J.C.; Beijnen, J.H.; Brandjes, D.P. Influenza vaccination and hemostasis: No sustainable procoagulant effects from 2009 H1N1 influenza vaccine in healthy healthcare workers. J. Thromb. Haemost. JTH 2011, 9, 1659–1661. [Google Scholar] [CrossRef] [PubMed]
- Yahalom-Ronen, Y.; Tamir, H.; Melamed, S.; Politi, B.; Shifman, O.; Achdout, H.; Vitner, E.B.; Israeli, O.; Milrot, E.; Stein, D.; et al. A single dose of recombinant VSV-G-spike vaccine provides protection against SARS-CoV-2 challenge. Nat. Commun. 2020, 11, 6402. [Google Scholar] [CrossRef]
- Rosenke, K.; Meade-White, K.; Letko, M.; Clancy, C.; Hansen, F.; Liu, Y.; Okumura, A.; Tang-Huau, T.L.; Li, R.; Saturday, G.; et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. BioRxiv 2020, 314070. [Google Scholar] [CrossRef]
- Pandey, K.; Acharya, A.; Mohan, M.; Ng, C.L.; Reid, S.P.; Byrareddy, S.N. Animal models for SARS-CoV-2 research: A comprehensive literature review. Transbound Emerg. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, J.; Guha, R. Infectivity, virulence, pathogenicity, host-pathogen interactions of SARS and SARS-CoV-2 in experimental animals: A systematic review. Vet Res. Commun. 2020, 44, 101–110. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandeil, A.; Mostafa, A.; Hegazy, R.R.; El-Shesheny, R.; El Taweel, A.; Gomaa, M.R.; Shehata, M.; Elbaset, M.A.; Kayed, A.E.; Mahmoud, S.H.; et al. Immunogenicity and Safety of an Inactivated SARS-CoV-2 Vaccine: Preclinical Studies. Vaccines 2021, 9, 214. https://doi.org/10.3390/vaccines9030214
Kandeil A, Mostafa A, Hegazy RR, El-Shesheny R, El Taweel A, Gomaa MR, Shehata M, Elbaset MA, Kayed AE, Mahmoud SH, et al. Immunogenicity and Safety of an Inactivated SARS-CoV-2 Vaccine: Preclinical Studies. Vaccines. 2021; 9(3):214. https://doi.org/10.3390/vaccines9030214
Chicago/Turabian StyleKandeil, Ahmed, Ahmed Mostafa, Rehab R. Hegazy, Rabeh El-Shesheny, Ahmed El Taweel, Mokhtar R. Gomaa, Mahmoud Shehata, Marawan A. Elbaset, Ahmed E. Kayed, Sara H. Mahmoud, and et al. 2021. "Immunogenicity and Safety of an Inactivated SARS-CoV-2 Vaccine: Preclinical Studies" Vaccines 9, no. 3: 214. https://doi.org/10.3390/vaccines9030214
APA StyleKandeil, A., Mostafa, A., Hegazy, R. R., El-Shesheny, R., El Taweel, A., Gomaa, M. R., Shehata, M., Elbaset, M. A., Kayed, A. E., Mahmoud, S. H., Moatasim, Y., Kutkat, O., Yassen, N. N., Shabana, M. E., GabAllah, M., Kamel, M. N., Abo Shama, N. M., El Sayes, M., Ahmed, A. N., ... Ali, M. A. (2021). Immunogenicity and Safety of an Inactivated SARS-CoV-2 Vaccine: Preclinical Studies. Vaccines, 9(3), 214. https://doi.org/10.3390/vaccines9030214