Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Nanoadjuvant Candidates
2.2. The Measurements of Size and Zeta Potential
2.3. Nanoadjuvant Candidates Long Term Stability
2.4. Mucoadhesion
2.5. Isolation of BMDMs and Cell Cultures
2.6. The Testing of Nanoadjuvant Candidates’ Cytotoxicity
2.7. Induction of TNF-α
2.8. Expression of TLR4
2.9. RT-qPCR Analysis
2.10. DQ-OVA Engulfment
2.11. The Interaction between OVA and Nanoadjuvant Candidates
2.12. Mice Immunization
2.13. Statistical Analysis
3. Results
3.1. Physicochemical Parameters and Stability of Nanoadjuvant Candidates
3.2. Nanoadjuvant Candidates Adhere to Mucin
3.3. The Effect of NACs on Viability of the Cells
3.4. Nanoadjuvant Candidates Potentiate TNF-α Response to LPS Treatment
3.5. Nanoadjuvant Candidates Induce Expression of TLR4 in Airway Epithelial Cells
3.6. Nanoadjuvant Candidates Facilitate Protein Sampling by Airway Epithelial and Dendritic Cells
3.7. Interaction of Nanoadjuvant Candidates with OVA
3.8. Nanoadjuvant Candidates Induce High Titer of Anti-OVA IgG Antibodies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cox, J.C.; Coulter, A.R. Adjuvants—A Classification and Review of Their Modes of Action. Vaccine 1997, 15, 248–256. [Google Scholar] [CrossRef]
- Lee, S.; Nguyen, M.T. Recent Advances of Vaccine Adjuvants for Infectious Diseases. Immune Netw. 2015, 15, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. Common Ingredients in U.S. Licensed Vaccines. Available online: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/common-ingredients-us-licensed-vaccines (accessed on 5 January 2021).
- Tritto, E.; Mosca, F.; De Gregorio, E. Mechanism of Action of Licensed Vaccine Adjuvants. Vaccine 2009, 27, 3331–3334. [Google Scholar] [CrossRef]
- Splawn, L.M.; Bailey, C.A.; Medina, J.P.; Cho, J.C. Heplisav-B Vaccination for the Prevention of Hepatitis B Virus Infection in Adults in the United States. Drugs Today 2018, 54, 399–405. [Google Scholar] [CrossRef]
- Falkeborn, T.; Bråve, A.; Larsson, M.; Åkerlind, B.; Schröder, U.; Hinkula, J. EndocineTM, N3OA and N3OASq; Three Mucosal Adjuvants That Enhance the Immune Response to Nasal Influenza Vaccination. PLoS ONE 2013, 8, e70527. [Google Scholar] [CrossRef]
- Christensen, D.; Foged, C.; Rosenkrands, I.; Lundberg, C.V.; Andersen, P.; Agger, E.M.; Nielsen, H.M. CAF01 Liposomes as a Mucosal Vaccine Adjuvant: In Vitro and in Vivo Investigations. Int. J. Pharm. 2010, 390, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Das, S.C.; Hatta, M.; Wilker, P.R.; Myc, A.; Hamouda, T.; Neumann, G.; Baker, J.R.; Kawaoka, Y. Nanoemulsion W805EC Improves Immune Responses upon Intranasal Delivery of an Inactivated Pandemic H1N1 Influenza Vaccine. Vaccine 2012, 30, 6871–6877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Patil, H.P.; de Vries-Idema, J.; Wilschut, J.; Huckriede, A. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies. PLoS ONE 2013, 8, e69649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Even-Or, O.; Joseph, A.; Itskovitz-Cooper, N.; Samira, S.; Rochlin, E.; Eliyahu, H.; Goldwaser, I.; Balasingam, S.; Mann, A.J.; Lambkin-Williams, R. A New Intranasal Influenza Vaccine Based on a Novel Polycationic Lipid-Ceramide Carbamoyl-Spermine (CCS). II. Studies in Mice and Ferrets and Mechanism of Adjuvanticity. Vaccine 2011, 29, 2474–2486. [Google Scholar] [CrossRef]
- Pine, S. Intranasal Immunization with Influenza Vaccine and a Detoxified Mutant of Heat Labile Enterotoxin from Escherichia Coli (LTK63). J. Control. Release 2002, 85, 263–270. [Google Scholar] [CrossRef]
- Watanabe, I.; Hagiwara, Y.; Kadowaki, S.; Yoshikawa, T.; Komase, K.; Aizawa, C.; Kiyono, H.; Takeda, Y.; McGhee, J.R.; Chiba, J.; et al. Characterization of Protective Immune Responses Induced by Nasal Influenza Vaccine Containing Mutant Cholera Toxin as a Safe Adjuvant (CT112K). Vaccine 2002, 20, 3443–3455. [Google Scholar] [CrossRef]
- Boyaka, P.N. Inducing Mucosal IgA: A Challenge for Vaccine Adjuvants and Delivery Systems. J. Immunol. 2017, 199, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Jang, Y.-S. The Development of Mucosal Vaccines for Both Mucosal and Systemic Immune Induction and the Roles Played by Adjuvants. Clin. Exp. Vaccine Res. 2017, 6, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson-Weaver, B.T.; Abraham, S.N.; Staats, H.F. Chapter 10—Innate Immunity-Based Mucosal Modulators and Adjuvants. In Mucosal Vaccines, 2nd ed.; Kiyono, H., Pascual, D.W., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 167–183. ISBN 978-0-12-811924-2. [Google Scholar]
- Makidon, P.E.; Belyakov, I.M.; Blanco, L.P.; Janczak, K.W.; Landers, J.; Bielinska, A.U.; Groom, J.V.; Baker, J.R. Nanoemulsion Mucosal Adjuvant Uniquely Activates Cytokine Production by Nasal Ciliated Epithelium and Induces Dendritic Cell Trafficking: Immunity to Infection. Eur. J. Immunol. 2012, 42, 2073–2086. [Google Scholar] [CrossRef]
- Gupta, R.K.; Siber, G.R. Adjuvants for Human Vaccines—Current Status, Problems and Future Prospects. Vaccine 1995, 13, 1263–1276. [Google Scholar] [CrossRef]
- Davenport, F.M.; Hennessy, A.V.; Askin, F.B. Lack of Adjuvant Effect of A1PO4 on Purified Influenza Virus Hemagglutinins in Man. J. Immunol. 1968, 100, 1139–1140. [Google Scholar]
- Holmgren, J.; Czerkinsky, C. Mucosal Immunity and Vaccines. Nat. Med. 2005, 11, S45–S53. [Google Scholar] [CrossRef]
- Skwarczynski, M.; Toth, I. Non-Invasive Mucosal Vaccine Delivery: Advantages, Challenges and the Future. Expert Opin. Drug Deliv. 2020, 17, 435–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, A.L.; Prieto-Garcia, M.E.; Nicoletti, C. Improving M Cell Mediated Transport across Mucosal Barriers: Do Certain Bacteria Hold the Keys? Immunology 2004, 113, 15–22. [Google Scholar] [CrossRef]
- Neutra, M.R.; Kozlowski, P.A. Mucosal Vaccines: The Promise and the Challenge. Nat. Rev. Immunol. 2006, 6, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Myc, A.; Kukowska-Latallo, J.F.; Bielinska, A.U.; Cao, P.; Myc, P.P.; Janczak, K.; Sturm, T.R.; Grabinski, M.S.; Landers, J.J.; Young, K.S.; et al. Development of Immune Response That Protects Mice from Viral Pneumonitis after a Single Intranasal Immunization with Influenza A Virus and Nanoemulsion. Vaccine 2003, 21, 3801–3814. [Google Scholar] [CrossRef]
- Chen, D.; Kristensen, D. Opportunities and Challenges of Developing Thermostable Vaccines. Expert Rev. Vaccines 2009, 8, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, N. European Centre for Ecotoxicology and Toxicology of Chemicals. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 547–548. ISBN 978-0-12-386455-0. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Wong, P.T.; Leroueil, P.R.; Smith, D.M.; Ciotti, S.; Bielinska, A.U.; Janczak, K.W.; Mullen, C.H.; Groom, F.V.; Taylor, E.M.; Passmore, C.; et al. Formulation, High Throughput In Vitro Screening and In Vivo Functional Characterization of Nanoemulsion-Based Intranasal Vaccine Adjuvants. PLoS ONE 2015, 11, e0126120. [Google Scholar] [CrossRef] [Green Version]
- Arora, P.; Sharma, S.; Garg, S. Permeability Issues in Nasal Drug Delivery. Drug Discov. Today 2002, 7, 967–975. [Google Scholar] [CrossRef]
- Myc, A.; Kukowska-Latallo, J.F.; Smith, D.M.; Passmore, C.; Pham, T.; Wong, P.; Bielinska, A.U.; Baker, J.R. Nanoemulsion Nasal Adjuvant W805EC Induces Dendritic Cell Engulfment of Antigen-Primed Epithelial Cells. Vaccine 2013, 31, 1072–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.T.; Wang, S.H.; Ciotti, S.; Makidon, P.E.; Smith, D.M.; Fan, Y.; Schuler, C.F.; Baker, J.R. Formulation and Characterization of Nanoemulsion Intranasal Adjuvants: Effects of Surfactant Composition on Mucoadhesion and Immunogenicity. Mol. Pharm. 2014, 11, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.C.; Benita, S. Enhanced Absorption and Drug Targeting by Positively Charged Submicron Emulsions. Drug Dev. Res. 2000, 50, 476–486. [Google Scholar] [CrossRef]
- He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of Particle Size and Surface Charge on Cellular Uptake and Biodistribution of Polymeric Nanoparticles. Biomaterials 2010, 31, 3657–3666. [Google Scholar] [CrossRef]
- Singh, T.; Jones, D.; Andrews, G.; Sheshala, R. Characterization of Bioadhesion. In Bioadhesion and Biomimetics; Bianco-Peled, H., Davidovich-Pinhas, M., Eds.; Pan Stanford: Singapore, 2015; pp. 23–46. ISBN 978-981-4463-98-0. [Google Scholar]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Tropea, C.; Yarin, A.L. Springer Handbook of Experimental Fluid Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-25141-5. [Google Scholar]
- Slütter, B.; Hagenaars, N.; Jiskoot, W. Rational Design of Nasal Vaccines. J. Drug Target. 2008, 16, 1–17. [Google Scholar] [CrossRef]
- Stenfeldt, A.-L.; Wennerås, C. Danger Signals Derived from Stressed and Necrotic Epithelial Cells Activate Human Eosinophils. Immunology 2004, 112, 605–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schijns, V.E.J.C. Induction and Direction of Immune Responses by Vaccine Adjuvants. Crit. Rev. Immunol. 2001, 21, 11. [Google Scholar] [CrossRef]
- Reed, S.G.; Hsu, F.-C.; Carter, D.; Orr, M.T. The Science of Vaccine Adjuvants: Advances in TLR4 Ligand Adjuvants. Curr. Opin. Immunol. 2016, 41, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neutra, M.R.; Pringault, E.; Kraehenbuhl, J.-P. Antigen Sampling Across Epithelial Barriers and Induction of Mucosal Immune Responses. Annu. Rev. Immunol. 1996, 14, 275–300. [Google Scholar] [CrossRef]
- Stein, P.E.; Leslie, A.G.; Finch, J.T.; Turnell, W.G.; McLaughlin, P.J.; Carrell, R.W. Crystal Structure of Ovalbumin as a Model for the Reactive Centre of Serpins. Nature 1990, 347, 99–102. [Google Scholar] [CrossRef] [PubMed]
- McNeal, M.M.; Broome, R.L.; Ward, R.L. Active Immunity against Rotavirus Infection in Mice Is Correlated with Viral Replication and Titers of Serum Rotavirus IgA Following Vaccination. Virology 1994, 204, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, F.R.; Matson, D.O.; Guerrero, M.L.; Shults, J.; Calva, J.J.; Morrow, A.L.; Glass, R.I.; Pickering, L.K.; Ruiz-Palacios, G.M. Serum Antibody as a Marker of Protection against Natural Rotavirus Infection and Disease. J. Infect. Dis. 2000, 182, 1602–1609. [Google Scholar] [CrossRef] [Green Version]
- Jertborn, M.; Svennerholm, A.M.; Holmgren, J. Saliva, Breast Milk, and Serum Antibody Responses as Indirect Measures of Intestinal Immunity after Oral Cholera Vaccination or Natural Disease. J. Clin. Microbiol. 1986, 24, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, K.R.; Gambhire, M.N.; Shaikh, I.M.; Kadam, V.J.; Pisal, S.S. Nasal Drug Delivery System-Factors Affecting and Applications. Available online: https://www.ingentaconnect.com/content/ben/cdth/2007/00000002/00000001/art00006 (accessed on 14 February 2019).
- Shao, X.-R.; Wei, X.-Q.; Song, X.; Hao, L.-Y.; Cai, X.-X.; Zhang, Z.-R.; Peng, Q.; Lin, Y.-F. Independent Effect of Polymeric Nanoparticle Zeta Potential/Surface Charge, on Their Cytotoxicity and Affinity to Cells. Cell Prolif. 2015, 48, 465–474. [Google Scholar] [CrossRef]
- Aoshi, T. Modes of Action for Mucosal Vaccine Adjuvants. Viral Immunol. 2017, 30, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Wanten, G.J.; Naber, A.H.J. Human Neutrophil Membrane Fluidity After Exposure to Structurally Different Lipid Emulsions. J. Parenter. Enter. Nutr. 2001, 25, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Khutoryanskiy, V.V. Advances in Mucoadhesion and Mucoadhesive Polymers. Macromol. Biosci. 2011, 11, 748–764. [Google Scholar] [CrossRef]
- Leung, S.-H.S.; Robinson, J.R. Polymer Structure Features Contributing to Mucoadhesion. II. J. Control. Release 1990, 12, 187–194. [Google Scholar] [CrossRef]
- Kesimer, M.; Sheehan, J.K. Mass Spectrometric Analysis of Mucin Core Proteins. Methods Mol. Biol. 2012, 842, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanot, C.C.; Choi, Y.S.; Anani, T.B.; Soundarrajan, D.; David, A.E. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells. Int. J. Mol. Sci. 2016, 17, 54. [Google Scholar] [CrossRef] [Green Version]
- Gallucci, S.; Lolkema, M.; Matzinger, P. Natural Adjuvants: Endogenous Activators of Dendritic Cells. Nat. Med. 1999, 5, 1249–1255. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, W.; Rock, K.L. Cell Injury Releases Endogenous Adjuvants That Stimulate Cytotoxic T Cell Responses. Proc. Natl. Acad. Sci. USA 2000, 97, 14590–14595. [Google Scholar] [CrossRef] [Green Version]
- Bielinska, A.U.; Makidon, P.E.; Janczak, K.W.; Blanco, L.P.; Swanson, B.; Smith, D.M.; Pham, T.; Szabo, Z.; Kukowska-Latallo, J.F.; Baker, J.R. Distinct Pathways of Humoral and Cellular Immunity Induced with the Mucosal Administration of a Nanoemulsion Adjuvant. J. Immunol. 2014, 192, 2722–2733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregg, K.A.; Harberts, E.; Gardner, F.M.; Pelletier, M.R.; Cayatte, C.; Yu, L.; McCarthy, M.P.; Marshall, J.D.; Ernst, R.K. Rationally Designed TLR4 Ligands for Vaccine Adjuvant Discovery. MBio 2017, 8, e00492-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, S.L.; Yang, C.-F.; Liu, Z.; Sweetwood, R.; Zhao, J.; Cheng, L.; Jin, H.; Woo, J. Molecular and Cellular Response Profiles Induced by the TLR4 Agonist-Based Adjuvant Glucopyranosyl Lipid A. PLoS ONE 2012, 7, e51618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, V.C.; McKeon, R.M.; Brackin, M.N.; Miller, L.A.; Keating, R.; Brown, S.A.; Makarova, N.; Perez, D.R.; MacDonald, G.H.; McCullers, J.A. Distinct Contributions of Vaccine-Induced Immunoglobulin G1 (IgG1) and IgG2a Antibodies to Protective Immunity against Influenza. Clin. Vaccine Immunol. 2006, 13, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porgador, A.; Yewdell, J.W.; Deng, Y.; Bennink, J.R.; Germain, R.N. Localization, Quantitation, and In Situ Detection of Specific Peptide–MHC Class I Complexes Using a Monoclonal Antibody. Immunity 1997, 6, 715–726. [Google Scholar] [CrossRef] [Green Version]
Name | Oil (65%) | Organic Solvent (8%) | Nonionic Surfactant (5%) | Cationic Surfactant (1%) | Solvent Used for Surfactant Preparation (21%) |
---|---|---|---|---|---|
NAC1 | PDMS | acetone | tyloxapol | BDMDDAC | water |
NAC2 | PDMS | ethanol | tyloxapol | BDMDDAC | water |
NAC3 | PDMS | ethanol | tyloxapol | CBP | water |
(A) | ||||||||
Name | Size Measurements | |||||||
Months | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 12 |
NAC1 | 534 ± 9.9 (0.31) | 472.6 ± 6.5 (0.311) | 512.1 ± 7.8 (0.362) | 467.5 ± 4.8 (0.312) | 472.2 ± 6.7 (0.274) | 492.8 ± 8.1 (0.312) | 506.6 ± 10.5 (0.354) | 458 ± 4.9 (0.257) |
NAC2 | 405.5 ± 9.2 (0.265) | 386.2 ± 5.3 (0.254) | 390.6 ± 6.1 (0.26) | 370.9 ± 2.8 (0.211) | 374.2 ± 3.5 (0.23) | 367.9 ± 2.9 (0.209) | 394.3 ± 4.8 (0.246) | 369.5 ± 2.4 (0.217) |
NAC3 | 623.6 ± 6.0 (0.468) | 565 ± 18.3 (0.387) | 542.8 ± 5.9 (0.349) | 580.4 ± 3.3 (0.4) | 553.9 ± 3.3 (0.359) | 604.4 ± 17.9 (0.4) | 565.7 ± 8.7 (0.367) | 551.8 ± 12.3 (0.334) |
(B) | ||||||||
Name | Zeta Potential Measurements | |||||||
Months | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 12 |
NAC1 | 30.4 ± 0.4 | 39.1 ± 0.4 | 36.5 ± 1.1 | 39.9 ± 0.6 | 35.8 ± 0.5 | 40.4 ± 0.6 | 35.1 ± 0.2 | 43.6 ± 0.5 |
NAC2 | 31.6 ± 0.7 | 38.5 ± 0.3 | 35.7 ± 0.4 | 33.6 ± 0.3 | 32.3 ± 0.5 | 38.1 ± 0.7 | 33.6 ± 0.2 | 39.5 ± 0.3 |
NAC3 | 64.4 ± 1.0 | 66.7 ± 1.1 | 64.3 ± 0.2 | 70.8 ± 0.6 | 65 ± 0.5 | 65.8 ± 0.9 | 62.4 ± 0.6 | 56.4 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razim, A.; Pyclik, M.; Pacyga, K.; Górska, S.; Xu, J.; Olszewski, M.A.; Gamian, A.; Myc, A. Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines. Vaccines 2021, 9, 234. https://doi.org/10.3390/vaccines9030234
Razim A, Pyclik M, Pacyga K, Górska S, Xu J, Olszewski MA, Gamian A, Myc A. Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines. Vaccines. 2021; 9(3):234. https://doi.org/10.3390/vaccines9030234
Chicago/Turabian StyleRazim, Agnieszka, Marcelina Pyclik, Katarzyna Pacyga, Sabina Górska, Jintao Xu, Michal A. Olszewski, Andrzej Gamian, and Andrzej Myc. 2021. "Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines" Vaccines 9, no. 3: 234. https://doi.org/10.3390/vaccines9030234
APA StyleRazim, A., Pyclik, M., Pacyga, K., Górska, S., Xu, J., Olszewski, M. A., Gamian, A., & Myc, A. (2021). Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines. Vaccines, 9(3), 234. https://doi.org/10.3390/vaccines9030234