The COVID-19 Vaccines: Recent Development, Challenges and Prospects
Abstract
:1. Introduction
2. Disease Manifestations and Principles
2.1. Onset Condition
2.2. Detection of Coronavirus in Plasma
2.3. Treatment
2.3.1. Mild to Moderate COVID-19 Symptomatic Patients
2.3.2. Severe COVID-19 Patients
2.3.3. Critical COVID-19 Patients
3. Vaccine for SARS-CoV-2
3.1. Principles of Vaccine
3.1.1. Live Virus Vaccines and Inactivated Vaccines
3.1.2. Subunit Vaccines
3.1.3. Vector Vaccines
3.1.4. Nucleic Acid Vaccines (mRNA Vaccines and DNA Vaccines)
3.2. Current Vaccine Research Progress
3.2.1. Time Frame
3.2.2. Safety and Efficacy of Vaccines
Vaccine Name | Vaccine Type | Primary Developers | Efficacy |
---|---|---|---|
Comirnaty, also known as BNT162b2 | mRNA-based vaccine | Pfizer, BioNTech; Fosun Pharma | 95% [108] |
Moderna COVID-19 Vaccine, also known as mRNA-1273 | mRNA-based vaccine | Moderna, U.S. Biomedical Advanced Research and Development Authority (BARDA), National Institute of Allergy and Infectious Diseases (NIAID) | 94.5% [109] |
CoronaVac | Inactivated vaccine | Sinovac | 50–91% [110] |
BBIBP-CorV | Inactivated vaccine | Beijing Institute of Biological Products; China National Pharmaceutical Group (Sinopharm) | 79% [111] |
Covaxin | Inactivated vaccine | Bharat Biotech, Indian Council of Medical Research (ICMR) | 81% [112] |
CoviVac | Inactivated vaccine | Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products | Yet to be made available |
Name yet to be announced | Inactivated vaccine | Wuhan Institute of Biological Products; China National Pharmaceutical Group (Sinopharm) | 72.5% based on interim analysis [113] |
AstraZeneca, also known as AZD1222 or Covishield in India | Vector vaccine (Adenovirus) | AstraZeneca, University of Oxford | 70% [109] |
Sputnik V, also known as Gam-Covid-Vac | Vector vaccine (Adenovirus Ad5 and Ad26) | Gamaleya Research Institute, Acellena Contract Drug Research and Development | 92% [97] |
Janssen COVID-19 Vaccine, also known as JNJ-78436735 or Ad26.COV2.S | Vector vaccine (Adenovirus Ad26) | Janssen Biotech Inc.—Janssen Pharmaceutical Company of Johnson & Johnson | 76.7–85.4% for molecularly confirmed severe/critical COVID-19 patients [114]. |
Convidicea, also known as Ad5-nCoV | Vector vaccine (Adenovirus Ad5) | CanSino Biologics | 65.7% in prevention and 90.98% in terminating severe symptoms (interim analysis) [115] |
ZF2001 | Vector vaccine (Recombinant vaccine) | Anhui Zhifei Longcom Biopharmaceutical, Institute of Microbiology of the Chinese Academy of Sciences | Yet to be made available |
EpiVacCorona | Subunit vaccine | Federal Budgetary Research Institution State Research Center of Virology and Biotechnology | 100% (Based on phase I and II trials) [98] |
3.3. Challenges Encountered in Developing Vaccines and Current Progress
3.3.1. Efficacy and Safety
3.3.2. Emergence of Coronavirus Variants
3.3.3. Vaccine Distribution Challenges
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, P.; Lu, X.; Xu, C.; Sun, W.; Pan, B. Understanding of COVID-19 based on current evidence. J. Med. Virol. 2020, 92, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Shin, W.I.; Pang, Y.X.; Meng, Y.; Lai, J.; You, C.; Zhao, H.; Lester, E.; Wu, T.; Pang, C.H. The first 75 days of novel coronavirus (SARS-CoV-2) outbreak: Recent advances, prevention, and treatment. Int. J. Environ. Res. Public Health 2020, 17, 2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T. Novel coronavirus: From discovery to clinical diagnostics. Infect. Genet. Evol. 2020, 79, 104211. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.-Y.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904.e9. [Google Scholar] [CrossRef]
- Zhao, S.; Musa, S.S.; Lin, Q.; Ran, J.; Yang, G.; Wang, W.; Lou, Y.; Yang, L.; Gao, D.; He, D.; et al. Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak. J. Clin. Med. 2020, 9, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Chen, Y.; Small, D.S. Analysis of the epidemic growth of the early 2019-nCoV outbreak using internationally confirmed cases. medRxiv 2020. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Giacobbe, D.R. The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm. Eur. J. Clin. Investig. 2020, 50, e13209. [Google Scholar] [CrossRef] [Green Version]
- Li, T.-Z.; Xu, G.-G. Research updates of 2019 novel coronavirus disease (COVID-19) diagnosis and treatment. Med. J. Chin. PLA 2020, 1–9, preprint. [Google Scholar]
- Ghosh, S.; Malik, Y.S. Drawing Comparisons between SARS-CoV-2 and the Animal Coronaviruses. Microorganisms 2020, 8, 1840. [Google Scholar] [CrossRef]
- Qin, J.; You, C.; Lin, Q.; Hu, T.; Yu, S.; Zhou, X.-H. Estimation of incubation period distribution of COVID-19 using disease onset forward time: A novel cross-sectional and forward follow-up study. medRxiv 2020, 6, eabc1202. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Surveillances, V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Wkly. 2020, 2, 113–122. [Google Scholar]
- Benvenuto, D.; Giovanetti, M.; Ciccozzi, A.; Spoto, S.; Angeletti, S.; Ciccozzi, M. The 2019-new Coronavirus epidemic: Evidence for virus evolution. J. Med. Virol. 2020, 92, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020, 14, 3822–3835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, P.R.; Garson, J.A.; Tedder, R.S.; Chan, P.K.; Tam, J.S.; Sung, J.J. Detection of SARS Coronavirus in Plasma by Real-Time RT-PCR. N. Engl. J. Med. 2003, 349, 2468–2469. [Google Scholar] [CrossRef] [Green Version]
- Tsang, K.; Mok, T.; Wong, P.; Ooi, G. Severe acute respiratory syndrome (SARS) in Hong Kong. Respirology 2010, 8, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Home Care for Patients with COVID-19 Presenting with Mild Symptoms and Management of Their Contacts: Interim Guidance, 17 March 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- National Institutes of Health. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; National Institutes of Health: New York, NY, USA, 2020.
- Mahase, E. Covid-19: FDA authorises neutralising antibody bamlanivimab for non-admitted patients. BMJ 2020, 371, m4362. [Google Scholar] [CrossRef]
- Jain, U. The Evolving Armamentarium of COVID-19 Therapeutics. ASA Monit. 2021, 85, 32–33. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance, 13 March 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Gtte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020, 295, 4773–4779. [Google Scholar] [CrossRef] [Green Version]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S. Remdesivir for the treatment of Covid-19—Preliminary report. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pharmaceuticals and Medical Devices Agency. Report on the Deliberation Results. Dapagliflozin; Pharmaceuticals and Medical Devices Agency: Tokyo, Japan, 2014.
- Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering 2020, 6, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Huang, J.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M.; Luo, Y.; Zhang, J. Favipiravir versus arbidol for COVID-19: A randomized clinical trial. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Jean, S.-S.; Lee, P.-I.; Hsueh, P.-R. Treatment options for COVID-19: The reality and challenges. J. Microbiol. Immunol. Infect. 2020, 53, 436–443. [Google Scholar] [CrossRef]
- Vasto, S.; Malavolta, M.; Pawelec, G. Age and immunity. Immun. Ageing 2006, 3, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawelec, G.; Weng, N.P. Can an effective SARS-CoV-2 vaccine be developed for the older population? Immun. Ageing 2020, 17, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-K. We Need More Public Hospitals and to Review Rapidly Possibility of Therapeutics as a COVID-19 Mitigation Strategy to Prevent the Collapse of the National Heath Care Service. Osong Public Health Res. Perspect. 2020, 11, 343–344. [Google Scholar] [CrossRef]
- Alhazzani, W.; Møller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; Oczkowski, S.; Levy, M.M.; Derde, L.; Dzierba, A. Surviving Sepsis Campaign: Guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020, 46, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Moreira, R.A.; Chwastyk, M.; Baker, J.L.; Guzman, H.V.; Poma, A.B. Quantitative determination of mechanical stability in the novel coronavirus spike protein. Nanoscale 2020, 12, 16409–16413. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.A.; Guzman, H.V.; Boopathi, S.; Baker, J.L.; Poma, A.B. Characterization of Structural and Energetic Differences between Conformations of the SARS-CoV-2 Spike Protein. Materials 2020, 13, 5362. [Google Scholar] [CrossRef] [PubMed]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005, 11, 875. [Google Scholar] [CrossRef]
- Ma, C.; Su, S.; Wang, J.; Wei, L.; Du, L.; Jiang, S. From SARS-CoV to SARS-CoV-2: Safety and broad-spectrum are important for coronavirus vaccine development. Microbes Infect. 2020, 22, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19), 24 February 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; et al. Development of an inactivated vaccine for SARS-CoV-2. Science 2020. [Google Scholar] [CrossRef]
- Poland, G.A.; Ovsyannikova, I.G.; Crooke, S.N.; Kennedy, R.I.B. SARS-CoV-2 Vaccine Development: Current Status. Mayo Clin. Proc. 2020, 95, 2172–2188. [Google Scholar] [CrossRef]
- Mueller, S.; Stauft, C.B.; Kalkeri, R.; Koidei, F.; Kushnir, A.; Tasker, S.; Coleman, J.R. A codon-pair deoptimized live-attenuated vaccine against respiratory syncytial virus is immunogenic and efficacious in non-human primates. Vaccine 2020, 38, 2943–2948. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Xia, R.; Yang, C.; Yin, B.; Li, Y.; Duan, C.; Liang, L.; Guo, H.; Xie, Q. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine 2009, 27, 5001–5007. [Google Scholar] [CrossRef]
- Meir, R.; Krispel, S.; Simanov, L.; Eliahu, D.; Maharat, O.; Pitcovski, J. Immune responses to mucosal vaccination by the recombinant A1 and N proteins of infectious bronchitis virus. Viral Immunol. 2012, 25, 55–62. [Google Scholar] [CrossRef]
- Watterson, D.; Wijesundara, D.; Modhiran, N.; Mordant, F.; Li, Z.; Avumegah, M.S.; McMillan, C.; Lackenby, J.; Guilfoyle, K.; Xplore, V.; et al. Molecular clamp stabilised Spike protein for protection against SARS-CoV-2. Res. Sq. 2020. preprint. [Google Scholar] [CrossRef]
- McIntyre, P.; Joo, Y.J.; Chiu, C.; Flanagan, K.; Macartney, K. COVID-19 vaccines–are we there yet? Aust. Prescr. 2021, 44, 19. [Google Scholar] [CrossRef]
- Won, J.-H.; Lee, H. The Current Status of Drug Repositioning and Vaccine Developments for the COVID-19 Pandemic. Int. J. Mol. Sci. 2020, 21, 9775. [Google Scholar] [CrossRef] [PubMed]
- Ura, T.; Okuda, K.; Shimada, M. Developments in viral vector-based vaccines. Vaccines 2014, 2, 624–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenberghe, L.H. COVID-19: Gene Transfer to the Rescue? Hum. Gene Ther. 2020, 31, 605–607. [Google Scholar] [CrossRef]
- University of Pittsburgh Medical Center. Researchers in Pittsburgh, Paris and Vienna Win Grant for COVID-19 Vaccine. 2020. Available online: https://www.upmc.com/media/news/032020-cepi-grant (accessed on 25 December 2020).
- Sah, R.; Shrestha, S.; Mehta, R.; Sah, S.K.; Raaban, A.R.; Dharma, K.; Rodriguez-Morales, A.J. AZD1222 (Covishield) vaccination for COVID-19: Experiences, challenges and solutions in Nepal. Travel Med. Infect. Dis. 2021, 40, 101989. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-Y.; Kong, W.-P.; Huang, Y.; Roberts, A.; Murphy, B.R.; Subbarao, K.; Nabel, G.J. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004, 428, 561–564. [Google Scholar] [CrossRef] [Green Version]
- Gooch, K.; Smith, T.; Salguero, F.; Fotheringham, S.; Watson, R.; Dennis, M.; Handley, A.; Humphries, H.; Longet, S.; Tipton, T. One or two dose regimen of the SARS-CoV-2 synthetic DNA vaccine INO-4800 protects against respiratory tract disease burden in nonhuman primate challenge model. Nat. Portf. 2021. preprint. [Google Scholar] [CrossRef]
- Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K.A.; et al. Phase 1/2 study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020, 586, 589–593. [Google Scholar] [CrossRef]
- Xinhua. Global Efforts to Combat Novel Coronavirus Focus on Vaccine Development. Xin Hua News, 8 February 2020. [Google Scholar]
- Walsh, E.E.; Frenck, R.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R. RNA-based COVID-19 vaccine BNT162b2 selected for a pivotal efficacy study. medRxiv 2020. [Google Scholar] [CrossRef]
- McKay, P.F.; Hu, K.; Blakney, A.K.; Samnuan, K.; Bouton, C.R.; Rogers, P.; Polra, K.; Lin, P.J.; Barbosa, C.; Tam, Y. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine induces equivalent preclinical antibody titers and viral neutralization to recovered COVID-19 patients. bioRxiv 2020. [Google Scholar] [CrossRef]
- Amanat, F.; Krammer, F. SARS-CoV-2 Vaccines: Status Report. Immunity 2020, 52, 583–589. [Google Scholar] [CrossRef]
- Sharma, O.; Sultan, A.A.; Ding, H.; Triggle, C.R. A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Front. Immunol. 2020, 11, 2413. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Fontela, C.; Dowling, W.E.; Funnell, S.G.P.; Gsell, P.-S.; Riveros-Balta, A.X.; Albrecht, R.A.; Andersen, H.; Baric, R.S.; Carroll, M.W.; Cavaleri, M.; et al. Animal models for COVID-19. Nature 2020, 586, 509–515. [Google Scholar] [CrossRef]
- Ewen, C. Labs rush to study coronavirus in transgenic animals—Some are in short supply. Nature 2020, 579, 183. [Google Scholar]
- World Health Organization. Draft Landscape and Tracker of COVID-19 Candidate Vaccines; World Health Organization: Genova, Switzerland, 2021. [Google Scholar]
- Parker, E.P.; Shrotri, M.; Kampmann, B. Keeping track of the SARS-CoV-2 vaccine pipeline. Nat. Rev. Immunol. 2020, 20, 650. [Google Scholar] [CrossRef] [PubMed]
- Carl Zimmer, J.C.; Wee, S.-L. Coronavirus Vaccine Tracker. 2021. Available online: https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html (accessed on 25 December 2020).
- Sagonowsky, E. FDA Will Require 50% Efficacy for COVID-19 Vaccines. How High Is That Bar? 2020. Available online: https://www.fiercepharma.com/vaccines/fda-to-require-at-least-50-efficacy-for-covid-19-vaccines-wsj (accessed on 28 December 2020).
- U.S. National Library of Medicine. Study to Describe the Safety, Tolerability, Immunogenicity, and Efficacy of RNA Vaccine Candidates against COVID-19 in Healthy Individuals; U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. A Phase 3 Study to Evaluate the Safety, Tolerability, and Immunogenicity of Multiple Production Lots and Dose Levels of BNT162b2 against COVID-19 in Healthy Participants; U.S. National Library of Medicine: Bethesda, MD, USA, 2021.
- U.S. National Library of Medicine. Study to Evaluate the Safety, Tolerability, and Immunogenicity of SARS CoV-2 RNA Vaccine Candidate (BNT162b2) against COVID-19 in Healthy Pregnant Women 18 Years of Age and Older; U.S. National Library of Medicine: Bethesda, MD, USA, 2021.
- U.S. National Library of Medicine. A Study to Evaluate Efficacy, Safety, and Immunogenicity of mRNA-1273 Vaccine in Adults Aged 18 Years and Older to Prevent COVID-19; U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. A Study to Evaluate the Safety, Reactogenicity, and Effectiveness of mRNA-1273 Vaccine in Adolescents 12 to <18 Years Old to Prevent COVID-19 (TeenCove); U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. Clinical Trial of Efficacy and Safety of Sinovac’s Adsorbed COVID-19 (Inactivated) Vaccine in Healthcare Professionals (PROFISCOV); U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. Efficacy, Safety and Immunogenicity Study of SARS-CoV-2 Inactivated Vaccine (COVID-19); U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. Clinical Trial for SARS-CoV-2 Vaccine (COVID-19); U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- Chinese Clinical Trial Registry. A Phase III Clinical Trial for Inactivated Novel Coronavirus Pneumonia (COVID-19) Vaccine (Vero Cells); Chinese Clinical Trial Registry: Beijing, China, 2020. [Google Scholar]
- India National Institute of Medical Statistics. A Phase 3, Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to Evaluate the Efficacy, Safety, Immunogenicity, and Lot-to-Lot Consistency of BBV152, a Whole Virion Inactivated Vaccine in Adults Greater than or Equal to 18 Years of Age; NIMS: New Delhi, India, 2020.
- U.S. National Library of Medicine. Investigating a Vaccine against COVID-19; U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. Clinical Trial of Efficacy, Safety, and Immunogenicity of Gam-COVID-Vac Vaccine against COVID-19 (RESIST); U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. A Study of Ad26.COV2.S in Adults (COVID-19); U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. A Study of Ad26.COV2.S for the Prevention of SARS-CoV-2-Mediated COVID-19 in Adults (ENSEMBLE 2); U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. Phase III Trial of a COVID-19 Vaccine of Adenovirus Vector in Adults 18 Years Old and Above; U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. A Phase III Clinical Trial to Determine the Safety and Efficacy of ZF2001 for Prevention of COVID-19; U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. Study of the Tolerability, Safety, Immunogenicity and Preventive Efficacy of the EpiVacCorona Vaccine for the Prevention of COVID-19; U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. Study of a Recombinant Coronavirus-Like Particle COVID-19 Vaccine in Adults; U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. A Study to Determine the Safety and Efficacy of SARS-CoV-2 mRNA Vaccine CVnCoV in Adults for COVID-19; U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. Phase II/III Study of COVID-19 DNA Vaccine (AG0302-COVID19); U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- U.S. National Library of Medicine. A Controlled Phase 2/3 Study of Adjuvanted Recombinant SARS-CoV-2 Trimeric S-Protein Vaccine (SCB-2019) for the Prevention of COVID-19 (SCB-2019); U.S. National Library of Medicine: Bethesda, MD, USA, 2021.
- U.S. National Library of Medicine. The Efficacy, Safety and Immunogenicity Study of Inactivated SARS-CoV-2 Vaccine for Preventing against COVID-19; U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- India National Institute of Medical Statistics. A Prospective, Randomized, Adaptive, Phase I/II Clinical Study to Evaluate the Safety and Immunogenicity of Novel Corona Virus—2019-nCov Vaccine Candidate of M/s Cadila Healthcare Limited by Intradermal Route in Healthy Subjects; NIMS: New Delhi, India, 2020.
- U.S. National Library of Medicine. Study of GRAd-COV2 for the Prevention of COVID-19 in Adults (COVITAR); U.S. National Library of Medicine: Bethesda, MD, USA, 2021.
- U.S. National Library of Medicine. Immunogenicity, Efficacy and Safety of QazCovid-in® COVID-19 Vaccine; U.S. National Library of Medicine: Bethesda, MD, USA, 2020.
- De Soto, J.A. Evaluation of the Moderna, Pfizer/biontech, Astrazeneca/oxford and Sputnik V Vaccines for COVID-19. J. Med. Clin. Sci. 2020. preprint. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Zubkova, O.V.; Tukhvatullin, A.I.; Shcheblyakov, D.V.; Dzharullaeva, A.S.; Grousova, D.M.; Erokhova, A.S.; Kovyrshina, A.V.; Botikov, A.G. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020, 396, 887–897. [Google Scholar] [CrossRef]
- Chen, Y.W.; Yiu, C.-P.; Wong, K.-Y. Prediction of the 2019-nCoV 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. ChemRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Kan, B.; Hu, Y.; Mao, H.; Xin, Q.; Chu, K.; Han, W.; et al. Immunogenicity and Safety of a SARS-CoV-2 Inactivated Vaccine in Healthy Adults Aged 18-59 years: Report of the Randomized, Double-blind, and Placebo-controlled Phase 2 Clinical Trial. medRxiv 2020. [Google Scholar] [CrossRef]
- Roxby, P. Russian Covid Vaccine Shows Encouraging Results. BBC News, 11 November 2020. [Google Scholar]
- BELTA News. Russia Reports 100% Efficacy of EpiVacCorona Vaccine, in Belarusian Telegraph Agency. BELTA News, 19 January 2021. [Google Scholar]
- Zhu, F.-C.; Li, Y.-H.; Guan, X.-H.; Hou, L.-H.; Wang, W.-J.; Li, J.-X.; Wu, S.-P.; Wang, B.-S.; Wang, Z.; Wang, L.; et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020, 395, 1845–1854. [Google Scholar] [CrossRef]
- Ministry of Science and Higher Education of the Russian Federation. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences. 2021. Available online: http://www.chumakovs.ru/en/ (accessed on 4 January 2021).
- U.S. Food and Drug Administration. Janssen COVID-19 Vaccine—Fact Sheets and Additional Information. 2021. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/janssen-covid-19-vaccine (accessed on 25 December 2020).
- National Medical Products Administration. NMPA Conditionally Approves COVID-19 Vaccine Developed by Sinopharm’s Wuhan Institute; NMPA: Beijing, China, 2021.
- Xia, S.; Duan, K.; Zhang, Y.; Zhao, D.; Zhang, H.; Xie, Z.; Li, X.; Peng, C.; Zhang, Y.; Zhang, W.; et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: Interim analysis of 2 randomized clinical trials. JAMA 2020, 324, 951–960. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Li, S.; Jin, X.; Han, J.-b.; Xu, K.; Xu, S.; Han, Y.; Liu, C.; Zheng, T.; Liu, M.; et al. A tandem-repeat dimeric RBD protein-based COVID-19 vaccine ZF2001 protects mice and nonhuman primates. bioRxiv 2021. [Google Scholar] [CrossRef]
- Huang, B.; Dai, L.; Wang, H.; Hu, Z.; Yang, X.; Tan, W.; Gao, G.F. Neutralization of SARS-CoV-2 VOC 501Y.V2 by human antisera elicited by both inactivated BBIBP-CorV and recombinant dimeric RBD ZF2001 vaccines. bioRxiv 2021. [Google Scholar] [CrossRef]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet 2020, 396, 1595–1606. [Google Scholar] [CrossRef]
- Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med. 2020, 383, 2427–2438. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- BBC News. Sinovac: Brazil Results show Chinese Vaccine 50.4% Effective. BBC News, 13 January 2021. [Google Scholar]
- BBC News. Covid-19: China Approves Sinopharm Vaccine for General Use. BBC News, 31 December 2020. [Google Scholar]
- Bharat Biotech. COVAXIN®—India’s First Indigenous COVID-19 Vaccine. 2021. Available online: https://www.bharatbiotech.com/covaxin.html (accessed on 1 March 2021).
- Liu, R.; Woo, R. Sinopharm’s Wuhan Unit Reports 72.5% Efficacy for COVID Shot, Seeks Approval in China. Reuters, 24 February 2021. [Google Scholar]
- U.S. Food and Drug Administration. COVID-19 Vaccine Ad26.COV2.S, VAC31518 (JNJ-78436735)—Sponsor Briefing Document; FDA: White Oak, MD, USA, 2021.
- Gibran Naiyyar Peshimam. CanSinoBIO’s COVID-19 Vaccine 65.7% Effective in Global Trials, Pakistan Official Says. Reuters, 8 February 2021. [Google Scholar]
- Garvey, L.H.; Nasser, S. Allergic reactions to the first COVID-19 vaccine: Is polyethylene glycol (PEG) the culprit? Br. J. Anaesth. 2020. [Google Scholar] [CrossRef]
- Arthur, R. Pfizer COVID-19 Vaccine not to be Given to People with History of Anaphylaxis MHRA. Biopharma Reporter, 10 December 2020. [Google Scholar]
- Singh, J.; Samal, J.; Kumar, V.; Sharma, J.; Agrawal, U.; Ehtesham, N.Z.; Sundar, D.; Rahman, S.A.; Hira, S.; Hasnain, S.E. Structure-Function Analyses of New SARS-CoV-2 Variants B.1.1.7, B.1.351 and B.1.1.28.1: Clinical, Diagnostic, Therapeutic and Public Health Implications. Viruses 2021, 13, 439. [Google Scholar] [CrossRef]
- Mahase, E. Covid-19: What have we learnt about the new variant in the UK? BMJ 2020, 371, m4944. [Google Scholar] [CrossRef]
- Mallapaty, S. What’s the risk of dying from a fast-spreading COVID-19 variant? Nature 2021, 590, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Hirotsu, Y.; Omata, M. Discovery of SARS-CoV-2 strain of P.1 lineage harboring K417T/E484K/N501Y by whole genome sequencing in the city, Japan. medRxiv 2021. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Emerging SARS-CoV-2 Variants; CDC: Atlanta, GA, USA, 2021.
- Mahase, E. Covid-19: Pfizer and BioNTech submit vaccine for US authorisation. BMJ 2020, 371, m4552. [Google Scholar] [CrossRef] [PubMed]
- D’Agostini, G.; Esposito, A. Inferring Vaccine Efficacies and Their Uncertainties. A Simple Model Implemented in JAGS/rjags. Available online: https://www.roma1.infn.it/~dagos/covid19w.pdf (accessed on 25 February 2021).
No. | Primary Developers | Year and Month | 2020 | 2021 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vaccine Name | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 01 | 02 | 03 | ||
1 | Pfizer, BioNTech; Fosun Pharma | Comirnaty [67,68,69] | 1a | 1b | 1c | |||||||||
2 | Moderna, U.S. Biomedical Advanced Research and Development Authority (BARDA), National Institute of Allergy and Infectious Diseases (NIAID) | mRNA-1273 [70,71] | 2a | 2b | ||||||||||
3 | Sinovac | CoronaVac [72,73,74] | 3a | 3b | 3c | |||||||||
4 | Beijing Institute of Biological Products; China National Pharmaceutical Group (Sinopharm) | BBIBP-CorV [75] | 4a | |||||||||||
5 | Bharat Biotech, Indian Council of Medical Research (ICMR) | Covaxin [76] | 5a | |||||||||||
6 | Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products | CoviVac | 6a | |||||||||||
7 | Wuhan Institute of Biological Products; China National Pharmaceutical Group (Sinopharm) | Name yet to be announced | 7a | |||||||||||
8 | AstraZeneca, University of Oxford | AZD1222 [77] | 8a | |||||||||||
9 | Gamaleya Research Institute, Acellena Contract Drug Research and Development | Sputnik V [78] | 9a | |||||||||||
10 | Janssen Biotech Inc. - Janssen Pharmaceutical Company of Johnson & Johnson | Janssen COVID-19 Vaccine [79,80] | 10a | 10b | ||||||||||
11 | CanSino Biologics | Convidicea [81] | 11a | |||||||||||
12 | Anhui Zhifei Longcom Biopharmaceutical, Institute of Microbiology of the Chinese Academy of Sciences | ZF2001 [82] | 12a | |||||||||||
13 | Federal Budgetary Research Institution State Research Center of Virology and Biotechnology | EpiVacCorona [83] | 13a | |||||||||||
14 | Medicago | CoVLP [84] | 14a | |||||||||||
15 | CureVac, GlaxoSmithKline (GSK) | CVnCoV [85] | 15a | |||||||||||
16 | AnGes, Inc., Osaka University and Takara Bio. | AG0302-COVID19 [86] | 16a | |||||||||||
17 | Clover Biopharmaceuticals | SCB-2019 [87] | 17a | |||||||||||
18 | Institute of Medical Biology at the Chinese Academy of Medical Sciences | Name yet to be announced [88] | 18a | |||||||||||
19 | Zydus Cadila | ZyCoV-D [89] | 19a | |||||||||||
20 | ReiThera, Lazzaro Spallanzani National Institute for Infectious Diseases | GRAd-COV2 [90] | 20a | |||||||||||
21 | Finlay Vaccine Institute | Soberana 2 | 21a | |||||||||||
22 | Research Institute for Biological Safety Problems | QazCovid [91] | 22a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Pang, Y.; Lyu, Z.; Wang, R.; Wu, X.; You, C.; Zhao, H.; Manickam, S.; Lester, E.; Wu, T.; et al. The COVID-19 Vaccines: Recent Development, Challenges and Prospects. Vaccines 2021, 9, 349. https://doi.org/10.3390/vaccines9040349
Yan Y, Pang Y, Lyu Z, Wang R, Wu X, You C, Zhao H, Manickam S, Lester E, Wu T, et al. The COVID-19 Vaccines: Recent Development, Challenges and Prospects. Vaccines. 2021; 9(4):349. https://doi.org/10.3390/vaccines9040349
Chicago/Turabian StyleYan, Yuxin, Yoongxin Pang, Zhuoyi Lyu, Ruiqi Wang, Xinyun Wu, Chong You, Haitao Zhao, Sivakumar Manickam, Edward Lester, Tao Wu, and et al. 2021. "The COVID-19 Vaccines: Recent Development, Challenges and Prospects" Vaccines 9, no. 4: 349. https://doi.org/10.3390/vaccines9040349
APA StyleYan, Y., Pang, Y., Lyu, Z., Wang, R., Wu, X., You, C., Zhao, H., Manickam, S., Lester, E., Wu, T., & Pang, C. H. (2021). The COVID-19 Vaccines: Recent Development, Challenges and Prospects. Vaccines, 9(4), 349. https://doi.org/10.3390/vaccines9040349