Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation and Production of Antigens
2.2. Animal Research Reporting of In Vivo Experiments [ARRIVE]
2.3. Vaccination Protocols
2.4. Aerosol Infection and Bacterial Load Determination
2.5. Ethics Statement
2.6. Lymphocyte Isolation for Antigen Stimulation
2.7. Real-Time PCR
2.8. Histology
2.9. Statistical Analysis
3. Results
3.1. Truncated PPE42 (tnPPE42) and the 3-Antigen Fusion (TriFu64) Can Be Expressed and Purified
3.2. TriFu64 Triple-Antigen Fusion Can Reduce Bacterial Burden in Aerosol Infected Mice
3.3. The TriFu64 Triple-Antigen Fusion Induces a Strong Inflammatory Response upon Vaccination
3.4. The TriFu64 Triple-Antigen Fusion Impacts the Weight Gain in Mice Exposed to Aerosol Infection with Mtb
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Tuberculosis Report. Available online: https://www.who.int/teams/global-tuberculosis-programme/data (accessed on 23 February 2021).
- Houben, R.M.; Dodd, P.J. The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. PLoS Med 2016, 13, e1002152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazier, B.; McShane, H. Towards new TB vaccines. Semin. Immunopathol. 2020, 42, 315–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junqueira-Kipnis, A.P.; Marques Neto, L.M.; Kipnis, A. Role of fused Mycobacterium tuberculosis immunogens and adjuvants in modern tuberculosis vaccines. Front. Immunol. 2014, 5, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orme, I.; Robinson, R.; Cooper, A. The balance between protective and pathogenic immune responses in the TB infected lung. Nat. Immunol. 2015, 16, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Trunz, B.; Fine, P.; Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: A meta-analysis and assessment of cost-effectiveness. Lancet 2006, 367, 1173–1180. [Google Scholar] [CrossRef]
- Robinson, R.; Orme, I.; Cooper, A. The onset of adaptive immunity in the mouse model of tuberculosis and the factors which compromise its expression. Immunol. Rev. 2015, 264, 46–59. [Google Scholar] [CrossRef]
- Cooper, A.M.; Torrado, E. Protection versus pathology in tuberculosis: Recent insights. Curr. Opin. Immunol. 2012, 4, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.M. Cell mediated immune responses in tuberculosis. Annu. Rev. Immunol. 2009, 27, 393–422. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.; Scriba, T.J. Moving tuberculosis vaccines from theory to practice. Nat. Rev. Immunol. 2019, 19, 550–562. [Google Scholar] [CrossRef]
- Bertholet, S.; Ireton, G.C.; Ordway, D.J.; Windish, H.P.; Pine, S.O.; Kahn, M.; Phan, T.; Orme, I.M.; Vedvick, T.S.; Baldwin, S.L.; et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci. Transl. Med. 2010, 2, 53ra74. [Google Scholar] [CrossRef] [Green Version]
- Pearl, J.E.; Das, M.; Cooper, A.M. Immunological roulette: Luck or something more? Considering the connections between host and environment in TB. Cell. Mol. Immunol 2018, 15, 226–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, A.M. Mouse model of tuberculosis. Cold Spring Harb. Perspect. Med. 2014, 5, a018556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindestam Arlehamn, C.S.; Lewinsohn, D.; Sette, A.; Lewinsohn, D. Antigens for CD4 and CD8 T cells in tuberculosis. Cold Spring Harb. Perspect. Med. 2014, 4, a018465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Xu, Y.; Yang, E.; Wang, C.; Wang, H.; Shen, H. Novel recombinant BCG coexpressing Ag85B, ESAT-6 and Rv2608 elicits significantly enhanced cellular immune and antibody responses in C57BL/6 mice. Scand. J. Immunol. 2012, 76, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Roupie, V.; Romano, M.; Zhang, L.; Korf, H.; Lin, M.Y.; Franken, K.L.; Ottenhoff, T.H.; Klein, M.R.; Huygen, K. Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice. Infect. Immun. 2007, 75, 941–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurshid, S.; Khalid, R.; Afzal, M.; Waheed Akhtar, M. Truncation of PstS1 antigen of Mycobacterium tuberculosis improves diagnostic efficiency. Tuberculosis 2013, 93, 654–659. [Google Scholar] [CrossRef]
- Akhter, M.; Arif, S.; Khaliq, A.; Nisa, Z.U.; Khan, I.H.; Akhtar, M.W. Designing fusion molecules from antigens of Mycobacterium tuberculosis for detection of multiple antibodies in plasma of TB patients. Tuberculosis 2020, 124, 101981. [Google Scholar] [CrossRef]
- Ewann, F.; Jackson, M.; Pethe, K.; Cooper, A.; Mielcarek, N.; Ensergueix, D.; Gicquel, B.; Locht, C.; Supply, P. Transient requirement of the PrrA-PrrB two-component system for early intracellular multiplication of Mycobacterium tuberculosis. Infect. Immun. 2002, 70, 2256–2263. [Google Scholar] [CrossRef] [Green Version]
- Khader, S.; Bell, G.; Pearl, J.; Fountain, J.; Rangel-Moreno, J.; Cilley, G.; Shen, F.; Eaton, S.; Gaffen, S.; Swain, S.; et al. IL-23 and IL-17 in establishment of protective pulmonary CD4+ T cell responses upon vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 2007, 8, 369–377. [Google Scholar] [CrossRef]
- Roberts, A.D.; Cooper, A.M.; Belisle, J.T.; Turner, J.; Gonzalez-Juarerro, M.; Orme, I.M.; Stefan, H.E.K.; Dieter, K. Murine model of tuberculosis. In Methods in Microbiology; Academic Press: Cambridge, MA, USA, 2002; Volume 32, pp. 433–462. [Google Scholar]
- Shemer, A.; Scheyltjens, I.; Frumer, G.R.; Kim, J.S.; Grozovski, J.; Ayanaw, S.; Dassa, B.; Van Hove, H.; Chappell-Maor, L.; Boura-Halfon, S.; et al. Interleukin-10 prevents pathological microglia hyperactivation following peripheral endotoxin challenge. Immunity 2020, 53, 1033–1049.e1037. [Google Scholar] [CrossRef]
- Li, J.Y.; D’Amelio, P.; Robinson, J.; Walker, L.D.; Vaccaro, C.; Luo, T.; Tyagi, A.M.; Yu, M.; Reott, M.; Sassi, F.; et al. IL-17A is increased in humans with primary hyperparathyroidism and mediates PTH-induced bone loss in mice. Cell Metab. 2015, 22, 799–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhoades, E.R.; Frank, A.A.; Orme, I.M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuberc. Lung Dis. 1997, 78, 57–66. [Google Scholar] [CrossRef]
- Pearl, J.E.; Shabaana, A.K.; Solache, A.; Gilmartin, L.; Ghilardi, N.; deSauvage, F.; Cooper, A.M. IL-27 signaling compromises control of bacterial growth in mycobacteria-infected mice. J. Immunol. 2004, 173, 7490–7496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulman, S.; Savidge, B.O.; Alqaseer, K.; Das, M.K.; Abadi, N.N.; Pearl, J.E.; Turapov, O.; Mukamolova, G.V.; Akhtar, M.W.; Cooper, A.M. Core data set—Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens 2021. Vaccines 2021, in press. [Google Scholar]
- Day, T.A.; Penn-Nicholson, A.; Luabeya, A.K.K.; Fiore-Gartland, A.; Du Plessis, N.; Loxton, A.G.; Vergara, J.; Rolf, T.A.; Reid, T.D.; Toefy, A.; et al. Safety and immunogenicity of the adjunct therapeutic vaccine ID93 + GLA-SE in adults who have completed treatment for tuberculosis: A randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respir. Med. 2020, 9, 373–386. [Google Scholar] [CrossRef]
- Torrado, E.; Fountain, J.J.; Liao, M.; Tighe, M.; Reiley, W.W.; Lai, R.P.; Meintjes, G.; Pearl, J.E.; Chen, X.; Zak, D.E.; et al. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection. J. Exp. Med. 2015, 212, 1449–1463. [Google Scholar] [CrossRef] [Green Version]
- Moguche, A.O.; Shafiani, S.; Clemons, C.; Larson, R.P.; Dinh, C.; Higdon, L.E.; Cambier, C.J.; Sissons, J.R.; Gallegos, A.M.; Fink, P.J.; et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J. Exp. Med. 2015, 212, 715–728. [Google Scholar] [CrossRef] [Green Version]
- Moguche, A.O.; Musvosvi, M.; Penn-Nicholson, A.; Plumlee, C.R.; Mearns, H.; Geldenhuys, H.; Smit, E.; Abrahams, D.; Rozot, V.; Dintwe, O.; et al. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis. Cell Host Microbe 2017, 21, 695–706.e695. [Google Scholar] [CrossRef] [Green Version]
- Woodworth, J.S.; Aagaard, C.S.; Hansen, P.R.; Cassidy, J.P.; Agger, E.M.; Andersen, P. Protective CD4 T cells targeting cryptic epitopes of Mycobacterium tuberculosis resist infection-driven terminal differentiation. J. Immunol. 2014, 192, 3247–3258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozak, R.; Behr, M.A. Divergence of immunologic and protective responses of different BCG strains in a murine model. Vaccine 2011, 29, 1519–1526. [Google Scholar] [CrossRef]
- Cruz, A.; Fraga, A.; Fountain, J.; Rangel-Moreno, J.; Torrado, E.; Saraiva, M.; Pereira, D.; Randall, T.; Pedrosa, J.; Cooper, A.; et al. Pathological role of Interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J. Exp. Med. 2010, 207, 1609–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.L.; Plessner, H.L.; Voitenok, N.N.; Flynn, J.L. Tumor necrosis factor and tuberculosis. J. Investig. Dermatol. Symp. Proc. 2007, 12, 22–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prada-Medina, C.A.; Fukutani, K.F.; Pavan Kumar, N.; Gil-Santana, L.; Babu, S.; Lichtenstein, F.; West, K.; Sivakumar, S.; Menon, P.A.; Viswanathan, V.; et al. Systems Immunology of Diabetes-Tuberculosis Comorbidity Reveals Signatures of Disease Complications. Sci Rep. 2017, 7, 1999. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulman, S.; Savidge, B.O.; Alqaseer, K.; Das, M.K.; Nezam Abadi, N.; Pearl, J.E.; Turapov, O.; Mukamolova, G.V.; Akhtar, M.W.; Cooper, A.M. Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens. Vaccines 2021, 9, 519. https://doi.org/10.3390/vaccines9050519
Sulman S, Savidge BO, Alqaseer K, Das MK, Nezam Abadi N, Pearl JE, Turapov O, Mukamolova GV, Akhtar MW, Cooper AM. Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens. Vaccines. 2021; 9(5):519. https://doi.org/10.3390/vaccines9050519
Chicago/Turabian StyleSulman, Sadaf, Benjamin O. Savidge, Kawther Alqaseer, Mrinal K. Das, Neda Nezam Abadi, John E. Pearl, Obolbek Turapov, Galina V. Mukamolova, M. Waheed Akhtar, and Andrea May Cooper. 2021. "Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens" Vaccines 9, no. 5: 519. https://doi.org/10.3390/vaccines9050519
APA StyleSulman, S., Savidge, B. O., Alqaseer, K., Das, M. K., Nezam Abadi, N., Pearl, J. E., Turapov, O., Mukamolova, G. V., Akhtar, M. W., & Cooper, A. M. (2021). Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens. Vaccines, 9(5), 519. https://doi.org/10.3390/vaccines9050519