Four Simple Biomimetic Mineralization Methods to Improve the Thermostability and Immunogenicity of Virus-like Particles as a Vaccine against Foot-and-Mouth Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of FMD-VLPs
2.2. Biomineralization of FMD-VLPs
2.3. Characterization and Measurements
2.4. Cell Viability (and In Vitro Cytotoxicity of the VLPs-CaP Composites)
2.5. Cellular Uptake
2.6. Thermal Stability Analysis
2.7. Animal Experiments
2.8. Serum Neutralization
2.9. Statistical Analysis
3. Results
3.1. Preparation and Characterization of the VLPs-CaP Complexes
3.2. Biocompatibility of VLPs-CaP Complexes
3.3. Cellular Uptake of VLPs-CaP
3.4. Thermal Stability of VLPs-CaP Complexes
3.5. Animal Experiments
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Zhu, Z.; Zhang, M.; Zheng, H. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses. Vet. Res. 2015, 46, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo, E.; Escarmís, C.; Baranowski, E.; Ruiz-Jarabo, C.M.; Carrillo, E.; Núñez, J.I.; Sobrino, F. Evolution of foot-and-mouth disease virus. Virus Res. 2003, 91, 47–63. [Google Scholar] [CrossRef]
- Jamal, S.M.; Belsham, G.J. Foot-and-mouth disease: Past, present and future. Vet. Res. 2013, 44, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cox, S.J.; Barnett, P.V. Experimental evaluation of foot-and-mouth disease vaccines for emergency use in ruminants and pigs: A review. Vet. Res. 2009, 40, 13. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.; Yoon, S.S.; Wee, S.H.; Kim, Y.J.; Kim, B. Clinical manifestations of foot-and-mouth disease during the 2010/2011 epidemic in the Republic of Korea. Transbound. Emerg. Dis. 2012, 59, 517–525. [Google Scholar] [CrossRef]
- Parida, S. Vaccination against foot-and-mouth disease virus: Strategies and effectiveness. Expert Rev. Vaccines 2009, 8, 347–365. [Google Scholar] [CrossRef]
- Minor, P.D. Live attenuated vaccines: Historical successes and current challenges. Virology 2015, 479–480, 379–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luigi Buonaguro, M.L.T.; Buonaguro, F.M. Virus-like particles as particulate vaccines. Curr. HIV Res. 2010, 8, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Grgacic, E.V.L.; Anderson, D.A. Virus-like particles: Passport to immune recognition. Methods 2006, 40, 60–65. [Google Scholar] [CrossRef]
- Roldao, A.; Mellado, M.C.M.; Castilho, L.R.; Carrondo, M.J.; Alves, P.M. Virus-like particles in vaccine development. Expert Rev. Vaccines 2010, 9, 1149–1176. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Liu, P.; Bai, M.; Wang, K.; Feng, R.; Zhu, D.; Sun, Y.; Mu, S.; Li, H.; Harmsen, M.; et al. Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies. Protein Cell 2021, 1–8. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef]
- Jegerlehner, A.; Storni, T.; Lipowsky, G.; Schmid, M.; Pumpens, P. Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur. J. Immunol. 2002, 32, 3305–3314. [Google Scholar] [CrossRef]
- Qian, C.; Liu, X.; Xu, Q.; Wang, Z.; Chen, J.; Li, T.; Zheng, Q.; Yu, H.; Gu, Y.; Li, S.; et al. Recent Progress on the Versatility of Virus-Like Particles. Vaccines 2020, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Zeltins, A. Construction and characterization of virus-like particles: A review. Mol. Biotechnol. 2013, 53, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Paavonen, J.; Jenkins, D.; Bosch, F.X.; Naud, P.; Salmerón, J.; Wheeler, C.M.; Chow, S.-N.; Apter, D.L.; Kitchener, H.C.; Castellsague, X.; et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: An interim analysis of a phase III double-blind, randomised controlled trial. Lancet 2007, 369, 2161–2170. [Google Scholar] [CrossRef]
- Michel, M.L.; Tiollais, P. Hepatitis B vaccines: Protective efficacy and therapeutic potential. Pathol. Biol. 2010, 58, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liang, M.; Gu, W.; Li, C.; Miao, F.; Wang, X.; Jin, C.; Zhang, L.; Zhang, F.; Zhang, Q.; et al. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice. Virol. J. 2011, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Middelberg, A.P.; Rivera-Hernandez, T.; Wibowo, N.; Lua, L.H.; Fan, Y.; Magor, G.; Chang, C.; Chuan, Y.P.; Good, M.F.; Batzloff, M.R. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine 2011, 29, 7154–7162. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Muller, L.; Muller, M. Prophylactic papillomavirus vaccines. Clin. Dermatol. 2014, 32, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.C.; Sun, S.Q.; Jin, Y.; Yang, S.L.; Wei, Y.-Q.; Sun, D.H.; Yin, S.H.; Ma, J.W.; Liu, Z.X.; Guo, J.H.; et al. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle. Vet. Res. 2013, 44, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Park, K. Improving the reach of vaccines to low-resource regions with a needle-free vaccine delivery device and long-term thermostabilization. J. Control. Release 2011, 152, 320–329. [Google Scholar] [CrossRef]
- Wahid, A.A.; Doekhie, A.; Sartbaeva, A.; van den Elsen, J.M.H. Ensilication Improves the Thermal Stability of the Tuberculosis Antigen Ag85b and an Sbi-Ag85b Vaccine Conjugate. Sci. Rep. 2019, 9, 11409. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.B.; Kilgore, C.; McGlynn, M.; Jones, C.H. Improving global vaccine accessibility. Curr. Opin. Biotechnol. 2016, 42, 67–73. [Google Scholar] [CrossRef]
- Brandau, D.T.; Jones, L.S.; Wiethoff, C.M.; Rexroad, J.; Middaugh, C.R. Thermal stability of vaccines. J. Pharm. Sci. 2003, 92, 218–231. [Google Scholar] [CrossRef]
- Nudelman, F.; Sommerdijk, N.A. Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed. 2012, 51, 6582–6596. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Mo, L.; Song, Z.; Chen, W.; Deng, Y.; Zhao, H.; Qin, E.; Qin, C.; Tang, R. Eggshell-inspired biomineralization generates vaccines that do not require refrigeration. Angew. Chem. Int. Ed. 2012, 124, 10728–10731. [Google Scholar] [CrossRef]
- Laidler, J.R.; Stedman, K.M. Virus Silicification under Simulated Hot Spring Conditions. Astrobiology 2010, 10, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.; Jiang, W.; Zhang, Z.; Yan, Y.; Pan, H.; Xu, X.; Tang, R. Unique roles of acidic amino acids in phase transformation of calcium phosphates. J. Phys. Chem. B 2011, 115, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced. Nanoscale 2019, 11, 22748–22761. [CrossRef] [PubMed]
- Tavafoghi, M.; Cerruti, M. The role of amino acids in hydroxyapatite mineralization. J. R. Soc. Interface 2016, 13, 20160462. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Veis, A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem. Rev. 2008, 108, 4670–4693. [Google Scholar] [CrossRef] [Green Version]
- Rowe, P.S.N.; Kumagai, Y.; Gutierrez, G.; Garrett, I.R.; Blacher, R.; Rosen, D.; Cundy, J.; Navvab, S.; Chen, D.; Drezner, M.K. MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 2004, 34, 303–319. [Google Scholar] [CrossRef] [Green Version]
- David, V.; Martin, A.; Hedge, A.M.; Drezner, M.K.; Rowe, P.S.N. ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate. Am. J. Physiol. Ren. Physiol. 2010, 300, F783–F791. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, Y.C.; Tseng, Y.C.; Mozumdar, S.; Huang, L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J. Control. Release 2010, 142, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Khalifehzadeh, R.; Arami, H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv. Colloid Interface Sci. 2020, 279, 102157. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Cao, R.Y.; Chen, R.; Mo, L.; Han, J.F.; Wang, X.; Xu, X.; Jiang, T.; Deng, Y.Q.; Lyu, K. Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 7619–7624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Tang, R. Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem. 2008, 18, 3775–3787. [Google Scholar] [CrossRef]
- Mitragotri, S.; Lahann, J. Physical approaches to biomaterial design. Nat. Mater. 2009, 8, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combes, C.; Rey, C. Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomater. 2010, 6, 3362–3378. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wang, H.J.; Zhou, H.; Nian, Q.G.; Song, Z.; Deng, Y.Q.; Wang, X.; Zhu, S.Y.; Li, X.F.; Qin, C.F. Hydrated silica exterior produced by biomimetic silicification confers viral vaccine heat-resistance. ACS Nano 2015, 9, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Pagnotta, S.E.; McLain, S.E.; Soper, A.K.; Bruni, F.; Ricci, M.A. Water and trehalose: How much do they interact with each other? J. Phys. Chem. B 2010, 114, 4904–4908. [Google Scholar] [CrossRef] [PubMed]
Particles | Diameter [nm] | Zeta Potential [mV] | Biomineralization Efficiency (%) |
---|---|---|---|
VLPs | 37.32 | −20.9 | |
VLPs-CaP-1 | 72.81 | −12.6 | 77.57% |
VLPs-CaP-2 | 79.30 | −13.0 | 75.42% |
VLPs-CaP-3 | 86.60 | −12.5 | 68.25% |
VLPs-CaP-4 | 79.83 | −13.0 | 71.82% |
Vaccine | Number of Animals | Morbidity Number | Morbidity (%) | Protection Ratio (%) |
---|---|---|---|---|
PBS | 4 | 4 | 100 | 0 |
VLPs | 4 | 1 | 25 | 75 |
VLPs-CaP-1 | 4 | 2 | 50 | 50 |
VLPs-CaP-2 | 4 | 1 | 25 | 75 |
VLPs-CaP-3 | 4 | 1 | 25 | 75 |
VLPs-CaP-4 | 4 | 2 | 50 | 50 |
Vaccine | Number of Animals | Morbidity Number | Morbidity (%) | Protection Ratio (%) |
---|---|---|---|---|
PBS | 6 | 6 | 100 | 0 |
VLPs-37 °C-2 day | 6 | 5 | 83.3 | 16.7 |
VLPs-CaP-1-37 °C-4 day | 6 | 4 | 66.7 | 33.3 |
VLPs-CaP-2-37 °C-4 day | 6 | 3 | 50 | 50 |
VLPs-CaP-3-37 °C-4 day | 6 | 3 | 50 | 50 |
VLPs-CaP-4-37 °C-4 day | 6 | 4 | 66.7 | 33.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Li, J.; Teng, Z.; Ren, M.; Dong, H.; Zhang, Y.; Ru, J.; Du, P.; Sun, S.; Guo, H. Four Simple Biomimetic Mineralization Methods to Improve the Thermostability and Immunogenicity of Virus-like Particles as a Vaccine against Foot-and-Mouth Disease. Vaccines 2021, 9, 891. https://doi.org/10.3390/vaccines9080891
Guo M, Li J, Teng Z, Ren M, Dong H, Zhang Y, Ru J, Du P, Sun S, Guo H. Four Simple Biomimetic Mineralization Methods to Improve the Thermostability and Immunogenicity of Virus-like Particles as a Vaccine against Foot-and-Mouth Disease. Vaccines. 2021; 9(8):891. https://doi.org/10.3390/vaccines9080891
Chicago/Turabian StyleGuo, Mengnan, Jiajun Li, Zhidong Teng, Mei Ren, Hu Dong, Yun Zhang, Jiaxi Ru, Ping Du, Shiqi Sun, and Huichen Guo. 2021. "Four Simple Biomimetic Mineralization Methods to Improve the Thermostability and Immunogenicity of Virus-like Particles as a Vaccine against Foot-and-Mouth Disease" Vaccines 9, no. 8: 891. https://doi.org/10.3390/vaccines9080891
APA StyleGuo, M., Li, J., Teng, Z., Ren, M., Dong, H., Zhang, Y., Ru, J., Du, P., Sun, S., & Guo, H. (2021). Four Simple Biomimetic Mineralization Methods to Improve the Thermostability and Immunogenicity of Virus-like Particles as a Vaccine against Foot-and-Mouth Disease. Vaccines, 9(8), 891. https://doi.org/10.3390/vaccines9080891