Performance Comparison of Spiral-Wound and Plate-and-Frame Forward Osmosis Membrane Module
Abstract
:1. Introduction
2. Materials and Methods
2.1. FO Membrane Module
2.2. Experimental Setup
2.3. Analysis of FO Membrane Performance
3. Results and Discussion
3.1. Characteristics of SW FO and PF FO Elements
3.2. Performance of a FO Element
3.3. Performance of Serially Connected FO Elements
3.4. FO Footprint and Insights for FO Elements Design
4. Conclusions
Funding
Conflicts of Interest
Appendix A
References
- Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. Desalination 2020, 485, 114455. [Google Scholar] [CrossRef]
- Ma, C.; Huang, J.; Wang, L.; Zhao, B.; Zhang, Z.; Zhang, H. Microalgae dewatering using a hybrid dead-end/cross-flow forward osmosis system: Influence of microalgae properties, draw solution properties, and hydraulic conditions. Algal Res. 2020, 48, 101899. [Google Scholar] [CrossRef]
- Chun, Y.; Mulcahy, D.; Chun, Y.; Kim, I.S. A Short Review of Membrane Fouling in Forward Osmosis Processes. Membranes 2017, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, M.M.; Wang, K.Y.; Chung, T.-S. Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse. Ind. Eng. Chem. Res. 2010, 49, 5869–5876. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward osmosis: Where are we now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Klaysom, C.; Cath, T.Y.; Depuydt, T.; Vankelecom, I.F. Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chem. Soc. Rev. 2013, 42, 6959–6989. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; Elimelech, M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 2006, 284, 237–247. [Google Scholar] [CrossRef]
- Suwaileh, W.A.; Johnson, D.J.; Sarp, S.; Hilal, N. Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination 2018, 436, 176–201. [Google Scholar] [CrossRef] [Green Version]
- Alihemati, Z.; Hashemifard, S.; Matsuura, T.; Ismail, A.; Hilal, N. Current status and challenges of fabricating thin film composite forward osmosis membrane: A comprehensive roadmap. Desalination 2020, 491, 114557. [Google Scholar] [CrossRef]
- Ismail, A.F.; Khulbe, K.C.; Matsuura, T. Reverse Osmosis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 117–141. [Google Scholar]
- Awad, A.M.; Jalab, R.; Minier-Matar, J.; Adham, S.; Nasser, M.S.; Judd, S. The status of forward osmosis technology implementation. Desalination 2019, 461, 10–21. [Google Scholar] [CrossRef]
- Haupt, A.; Lerch, A. Forward Osmosis Application in Manufacturing Industries: A Short Review. Membranes 2018, 8, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Blandin, G.; Phuntsho, S.; Verliefde, A.; Le-Clech, P.; Shon, H. Practical considerations for operability of an 8″ spiral wound forward osmosis module: Hydrodynamics, fouling behaviour and cleaning strategy. Desalination 2017, 404, 249–258. [Google Scholar] [CrossRef]
- Kim, Y.C.; Park, S.-J. Experimental Study of a 4040 Spiral-Wound Forward-Osmosis Membrane Module. Environ. Sci. Technol. 2011, 45, 7737–7745. [Google Scholar] [CrossRef]
- Lee, S. Exploring the Operation Factors that Influence Performance of a Spiral-Wound Forward Osmosis Membrane Process for Scale-up Design. Membranes 2020, 10, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, S.-J.; Jeong, S.; Jang, A. Feasibility evaluation of element scale forward osmosis for direct connection with reverse osmosis. J. Membr. Sci. 2018, 549, 366–376. [Google Scholar] [CrossRef]
- Vandezande, P.; Gevers, L.E.M.; Vankelecom, I.F.J. Solvent resistant nanofiltration: Separating on a molecular level. Chem. Soc. Rev. 2008, 37, 365–405. [Google Scholar] [CrossRef]
- Balster, J. Spiral Wound Membrane Module. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–3. [Google Scholar]
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Gu, B.; Kim, D.; Kim, J.; Yang, D.R. Mathematical model of flat sheet membrane modules for FO process: Plate-and-frame module and spiral-wound module. J. Membr. Sci. 2011, 379, 403–415. [Google Scholar] [CrossRef]
- Ali, S.M.; Kim, J.E.; Phuntsho, S.; Jang, A.; Choi, J.Y.; Shon, H.K. Forward osmosis system analysis for optimum design and operating conditions. Water Res. 2018, 145, 429–441. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y.C. Performance analysis of plate-and-frame forward osmosis membrane elements and implications for scale-up design. J. Membr. Sci. 2018, 550, 219–229. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y.C. Calcium carbonate scaling by reverse draw solute diffusion in a forward osmosis membrane for shale gas wastewater treatment. J. Membr. Sci. 2017, 522, 257–266. [Google Scholar] [CrossRef]
- Deshmukh, A.; Yip, N.Y.; Lin, S.; Elimelech, M. Desalination by forward osmosis: Identifying performance limiting parameters through module-scale modeling. J. Membr. Sci. 2015, 491, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Tiraferri, A.; Yip, N.Y.; Straub, A.P.; Castrillon, S.R.-V.; Elimelech, M. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. J. Membr. Sci. 2013, 444, 523–538. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y.C.; Park, S.-J.; Lee, S.-K.; Choi, H.-C. Experiment and modeling for performance of a spiral-wound pressure-retarded osmosis membrane module. Desalination Water Treat. 2015, 57, 10101–10110. [Google Scholar] [CrossRef]
- She, Q.; Hou, D.; Liu, J.; Tan, K.H.; Tang, C.Y. Effect of feed spacer induced membrane deformation on the performance of pressure retarded osmosis (PRO): Implications for PRO process operation. J. Membr. Sci. 2013, 445, 170–182. [Google Scholar] [CrossRef]
- Kim, Y.C.; Elimelech, M. Adverse Impact of Feed Channel Spacers on the Performance of Pressure Retarded Osmosis. Environ. Sci. Technol. 2012, 46, 4673–4681. [Google Scholar] [CrossRef]
- Li, X.; Loh, C.H.; Wang, R.; Widjajanti, W.; Torres, J. Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer. J. Membr. Sci. 2017, 525, 257–268. [Google Scholar] [CrossRef]
- Ding, W.; Li, Y.; Bao, M.; Zhang, J.; Zhang, C.; Lu, J. Highly permeable and stable forward osmosis (FO) membrane based on the incorporation of Al2O3 nanoparticles into both substrate and polyamide active layer. RSC Adv. 2017, 7, 40311–40320. [Google Scholar] [CrossRef] [Green Version]
- Porifera Element Data Sheet. Available online: http://www.porifera.com/elements (accessed on 13 July 2020).
- Gruber, M.; Johnson, C.; Tang, C.; Jensen, M.; Yde, L.; Nielsen, C.H. Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems. J. Membr. Sci. 2011, 379, 488–495. [Google Scholar] [CrossRef]
- Phuntsho, S.; Hong, S.; Elimelech, M.; Shon, H.K. Osmotic equilibrium in the forward osmosis process: Modelling, experiments and implications for process performance. J. Membr. Sci. 2014, 453, 240–252. [Google Scholar] [CrossRef]
- Blandin, G.; Verliefde, A.R.; Tang, C.Y.; Childress, A.E.; Le-Clech, P. Validation of assisted forward osmosis (AFO) process: Impact of hydraulic pressure. J. Membr. Sci. 2013, 447, 1–11. [Google Scholar] [CrossRef]
- Blandin, G.; Vervoort, H.; D’Haese, A.; Schoutteten, K.; Bussche, J.V.; Vanhaecke, L.; Myat, D.T.; Le-Clech, P.; Verliefde, A.R. Impact of hydraulic pressure on membrane deformation and trace organic contaminants rejection in pressure assisted osmosis (PAO). Process. Saf. Environ. Prot. 2016, 102, 316–327. [Google Scholar] [CrossRef]
- Cath, T.; Childress, A.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Herron, J.R. Center tube configuration for a multiple spiral wound forward osmosis element. U.S. Patent US8354026B2, 15 January 2013. [Google Scholar]
- Lee, S.; Sim, Y.; Lee, J. Porous outflow pipe for forward osmosis or pressure-retarded osmosis, and forward osmosis or pressure-retarded osmosis module comprising same. WO 2015099345A1, 2 July 2015. [Google Scholar]
- Schwinge, J.; Neal, P.; Wiley, D.; Fletcher, D.; Fane, A. Spiral wound modules and spacers. J. Membr. Sci. 2004, 242, 129–153. [Google Scholar] [CrossRef]
Parameter | Spiral-Wound | Plate-and-Frame |
---|---|---|
Feed flow channel height (mm) | 0.7–0.9 | 1–3 |
Element size | diameter: 8, 4, or 2.5 inch, length: 40 inch | various |
Packing density (m2/m3) | 300–1000 | 100–400 |
Membrane area (m2/element) | 37–41 (8-inch diameter element) | various |
Advantage | high packing density, cost-effective construction | suitable for viscous liquid |
Disadvantage | high pressure drop (100–150 kPa for an RO element), long permeate path, difficult to clean | low packing density |
Typical application process | reverse osmosis, nanofiltration | membrane distillation, membrane bioreactor, electrodialysis |
Commercial FO manufacturer | Toray Advanced Materials Korea Oasys Water Fluid Technology Solutions | Porifera |
Parameter | SW FO | PF FO |
---|---|---|
Water permeability, A (L m−2 h−1 bar−1) a | 6.68 | 2.22 |
NaCl permeability, B (L m−2 h−1) a | 0.54 | 0.49 |
Structural parameter, S (μm) b | 336 | 269 |
NaCl rejection, R (%) a | 97.4 | 96.0 |
FO water flux, Jw (L m−2 h−1) b | 34.2 | 25.9 |
Feed spacer thickness (mm) | 1.15 | 0.76 c |
Draw spacer thickness (mm) | 1.98 | none c |
Membrane area (m2/element) | 15 | 7 c |
Packing density (m2/m3) | 464 | 283 |
Flow Rate Condition | SW FO | PF FO | |||||
---|---|---|---|---|---|---|---|
DS Flow (LPM) | FS Flow (LPM) | Theoretical | Theoretical | ||||
5 | 10 | 0.57 | 0.34 | 0.64 | 0.51 | 0.34 | 0.74 |
15 | 0.63 | 0.40 | 0.59 | 0.62 | 0.41 | 0.63 | |
20 | 0.71 | 0.46 | 0.51 | 0.69 | 0.46 | 0.58 | |
10 | 10 | 0.41 | 0.25 | 0.79 | 0.41 | 0.26 | 0.78 |
15 | 0.55 | 0.30 | 0.63 | 0.54 | 0.30 | 0.65 | |
20 | 0.63 | 0.34 | 0.54 | 0.64 | 0.34 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S. Performance Comparison of Spiral-Wound and Plate-and-Frame Forward Osmosis Membrane Module. Membranes 2020, 10, 318. https://doi.org/10.3390/membranes10110318
Lee S. Performance Comparison of Spiral-Wound and Plate-and-Frame Forward Osmosis Membrane Module. Membranes. 2020; 10(11):318. https://doi.org/10.3390/membranes10110318
Chicago/Turabian StyleLee, Sungyun. 2020. "Performance Comparison of Spiral-Wound and Plate-and-Frame Forward Osmosis Membrane Module" Membranes 10, no. 11: 318. https://doi.org/10.3390/membranes10110318
APA StyleLee, S. (2020). Performance Comparison of Spiral-Wound and Plate-and-Frame Forward Osmosis Membrane Module. Membranes, 10(11), 318. https://doi.org/10.3390/membranes10110318