Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors
Abstract
:1. Introduction
2. Membrane Contactor Operating Principle and Wetting Mechanism
2.1. Operating Pathway
2.2. Wetting Mechanism
2.2.1. Non-Wetting Mode
2.2.2. Partially Wetted Mode
2.2.3. Fully Wetted Mode
3. Influencing Factors of Gas Separation in Membrane Contactors
3.1. Membrane Material
3.1.1. Research Progress of Polymeric Membrane
3.1.2. Research Progress of Ceramic Membrane
3.2. Absorbents
3.2.1. Amine Solvent
3.2.2. Activated Alcohol Amine Solvent
3.2.3. Amino Acid Solutions
3.2.4. K2CO3
3.2.5. Nanofluids
3.3. Contactor Structure
3.4. Others
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, N.; Pan, Z.; Zhang, Z.; Zhang, W.; Zhang, L. CO2 capture from coalbed methane using membranes: A review. Environ. Chem. Lett. 2020, 18, 79–96. [Google Scholar] [CrossRef]
- Dagan-Jaldety, C.; Fridman-Bishop, N.; Gendel, Y. Nitrate hydrogenation by microtubular CNT-made catalytic membrane contactor. Chem. Eng. J. 2020, 401, 126142. [Google Scholar] [CrossRef]
- Nieminen, H.; Järvinen, L.; Ruuskanen, V.; Laari, A.; Ahola, J. Mass transfer characteristics of a continuously operated hollow-fiber membrane contactor and stripper unit for CO2 capture. Int. J. Greenh. Gas Control 2020, 98, 103063. [Google Scholar] [CrossRef]
- Cabezas, R.; Prieto, V.; Plaza, A.; Merlet, G.; Quijada-Maldonado, E.; Torres, A.; Yáñez-S, M.; Romero, J. Extraction of vanillin from aqueous matrices by membrane-based supercritical fluid extraction: Effect of operational conditions on its performance. Ind. Eng. Chem. Res. 2020, 59, 14064–14074. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, N.; Zhang, W.; Zhang, Z. Simultaneous removal of CO2 and H2S from coalbed methane in a membrane contactor. J. Clean. Prod. 2020, 273, 123107. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, S.-Y.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent advances in carbon dioxide utilization. Renew. Sustain. Energy Rev. 2020, 125, 109799. [Google Scholar] [CrossRef]
- Algarini, A.; Ozturk, I. The relationship among GDP, carbon dioxide emissions, energy consumption, and energy production from oil and gas in Saudi Arabia. Int. J. Energy Econ. Policy 2020, 10, 280–285. [Google Scholar] [CrossRef]
- Wang, Z.S.; Pan, L.-B. Implementation results of emission standards of air pollutants for thermal power plants: A numerical simulation. Environ. Sci. 2014, 35, 853–863. [Google Scholar]
- Wang, B.; Lau, Y.S.; Huang, Y.; Organ, B.; Ho, K.F. Investigation of factors affecting the gaseous and particulate matter emissions from diesel vehicles. Air Qual. Atmosph. Health 2019, 12, 1113–1126. [Google Scholar] [CrossRef]
- Rosli, A.; Ahmad, A.L.; Low, S.C. Enhancing membrane hydrophobicity using silica end-capped with organosilicon for CO2 absorption in membrane contactor. Sep. Purificat. Technol. 2020, 251, 117429. [Google Scholar] [CrossRef]
- Wang, D.; Teo, W.; Li, K. Removal of H2S to ultra-low concentrations using an asymmetric hollow fibre membrane module. Sep. Purif. Technol. 2002, 27, 33–40. [Google Scholar] [CrossRef]
- Xian, Y.; Shui, Y.; Li, M.; Pei, C.; Zhang, Q.; Yao, Y. pH-Dependent thermoresponsive poly[2-(diethylamino)ethyl acrylamide]-grafted PVDF membranes with switchable wettability for efficient emulsion separation. J. Appl. Polym. Sci. 2020, 137, 49032. [Google Scholar] [CrossRef]
- Zhu, Z.; Kang, G.; Sun, Y.; Yu, S.; Li, M.; Xu, J.; Cao, Y. An experimental study on synthesis of glycolic acid via carbonylation of formaldehyde using PTFE membrane contactor. J. Membr. Sci. 2019, 586, 259–266. [Google Scholar] [CrossRef]
- Koseoglu-Imer, D.Y.; Kose, B.; Altinbas, M.; Koyuncu, I. The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes. J. Membr. Sci. 2013, 428, 620–628. [Google Scholar] [CrossRef]
- Han, L.; Young, H.; Hwi, R.; Jin, H. Preparation of an anion exchange membrane using the blending polymer of poly(ether sulfone) (PES) and poly(phenylene sulfide sulfone) (PPSS). Membr. J. 2019, 29, 155–163. [Google Scholar]
- Zheng, P.; Liu, K.; Wang, J.; Dai, Y.; Yu, B.; Zhou, X.; Hao, H.; Luo, Y. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma. Appl. Surf. Sci. 2012, 259, 494–500. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, L.; Nagasawa, H.; Kanezashi, M.; Tsuru, T. High-performance molecular-separation ceramic membranes derived from oxidative cross-linked polytitanocarbosilane. J. Am. Ceram. Soc. 2020, 103, 4473–4488. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, H.; Cheng, X. Experiments of mercaptans removal from FCC gasoline by NaOH aqueous in membrane contactor. Pet. Sci. Technol. 2010, 28, 903–910. [Google Scholar] [CrossRef]
- Volkov, A.; Tsarkov, S.; Goetheer, E.; Volkov, V. Amine-based solvents regeneration in gas-liquid membrane contactor based on asymmetric PVTMS. Pet. Chem. 2015, 55, 716–723. [Google Scholar] [CrossRef]
- Song, H.J.; Park, S.; Kim, H.; Gaur, A.; Park, J.W.; Lee, S.J. Carbon dioxide absorption characteristics of aqueous amino acid salt solutions. Int. J. Greenh. Gas Control 2012, 11, 64–72. [Google Scholar] [CrossRef]
- Basavaraj, D.; Shijo, T. Experimental investigation on absorption performance of nanofluids for CO2 capture. Int. J. Air-Cond. Refrig. 2020, 28. [Google Scholar] [CrossRef]
- Chhotaray, P.K.; Biswal, S.K.; Pandey, S. Development of novel hybrid ionic fluids for efficient CO2 capture and cellulose dissolution. J. Mol. Liq. 2020, 312, 113477. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Z.; Zhang, L.; Ju, S. Research progress on the absorption of CO2 in flue gas by hollow fiber membrane. Nat. Gas Ind. 2014, 34, 114–123. [Google Scholar]
- Li, Y.; Wang, L.; Hu, X.; Jin, P.; Song, X. Surface modification to produce superhydrophobic hollow fiber membrane contactor to avoid membrane wetting for biogas purification under pressurized conditions. Sep. Purif. Technol. 2018, 194, 222–230. [Google Scholar] [CrossRef]
- Zolfaghari, A.; Mousavi, S.; Bozarjomehri, R.; Bakhtiari, F. Gas-liquid membrane contactors: Modeling study of non-uniform membrane wetting. J. Membr. Sci. 2018, 555, 463–472. [Google Scholar] [CrossRef]
- Yan, S.; Fang, M.; Zhang, W.; Wang, S.; Xu, Z.; Luo, Z.; Cen, K. Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process. Technol. 2007, 88, 501–511. [Google Scholar] [CrossRef]
- Keshavarz, P.; Fathikalajahi, J.; Ayatollahi, S. Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor. J. Hazard. Mater. 2007, 152, 1237–1247. [Google Scholar] [CrossRef]
- Wang, X.; Gao, J.; Zhang, J.; Zhang, X.; Guo, R. Theoretical and experimental studies on acetylene absorption in a polytetrafluoroethylene hollow-fiber membrane contactor. Chem. Eng. Technol. 2015, 38, 215–222. [Google Scholar] [CrossRef]
- Mosadegh-Sedghi, S.; Rodrigue, D.; Brisson, J.; Iliuta, M.C. Wetting phenomenon in membrane contactors – Causes and prevention. J. Membr. Sci. 2014, 452, 332–353. [Google Scholar] [CrossRef]
- Yin, Y.; Jeong, N.; Tong, T. The effects of membrane surface wettability on pore wetting and scaling reversibility associated with mineral scaling in membrane distillation. J. Membr. Sci. 2020, 614, 118503. [Google Scholar] [CrossRef]
- Klaassen, R.; Jansen, A. The membrane contactor: Environmental applications and possibilities. Environ. Progress 2001, 20, 37–43. [Google Scholar] [CrossRef]
- Rangwala, H. Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J. Membr. Sci. 1996, 112, 229–240. [Google Scholar] [CrossRef]
- Abdolahi, H.; Seddighi, S. CO2 capture by modified hollow fiber membrane contactor: Numerical study on membrane structure and membrane wettability. Fuel Process. Technol. 2020, 209, 106530. [Google Scholar] [CrossRef]
- Druzhinin, O.; Troitskaya, Y.; Zilitinkevich, S. The study of momentum, mass, and heat transfer in a droplet-laden turbulent airflow over a waved water surface by direct numerical simulation. J. Geophys. Res. Oceans 2018, 123, 8346–8365. [Google Scholar] [CrossRef]
- Li, C.; Sun, W.; Lu, Z.; Ao, X.; Li, S. Ceramic nanocomposite membranes and membrane fouling: A review. Water Res. 2020, 175, 115674. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, J.; Li, C.; Meng, H. A review on cleaning of nanofiltration and reverse osmosis membranes used for water treatment. Desalin. Water Treat. 2017, 87, 27–67. [Google Scholar] [CrossRef]
- Taheran, M.; Brar, S.K.; Verma, M.; Surampalli, R.; Zhang, T.C.; Valero, J. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci. Total Environ. 2016, 547, 60–77. [Google Scholar] [CrossRef]
- Muntha, S.T.; Kausar, A.; Siddiq, M. Advances in polymeric nanofiltration membrane: A review. Polym. Plast. Technol. Eng. 2017, 56, 841–856. [Google Scholar] [CrossRef]
- Naim, R.; Ismail, A.F.; Matsuura, T.; Rudaini, I.A.; Abdullah, S. Polyetherimide hollow fiber membranes for CO2 absorption and stripping in membrane contactor application. RSC Adv. 2018, 8, 3556–3563. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Lin, Y.; Lee, M.; Malde, C.; Wang, R. Development of low mass-transfer-resistance fluorinated TiO2 -SiO2/PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. J. Membr. Sci. 2018, 552, 253–264. [Google Scholar] [CrossRef]
- Fang, M.; Xiang, Q.; Zhou, X.; Ma, Q.; Luo, Z. Experimental study on CO2 absorption into aqueous ammonia-based blended absorbents. Energy Procedia 2014, 61, 2284–2288. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Shen, Q.; Gong, H.; Du, M. Preparation of a novel dual-layer polyvinylidene fluoride hollow fiber composite membrane with hydrophobic inner layer for carbon dioxide absorption in a membrane contactor. Sep. Purif. Technol. 2020, 248, 117045. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.; Park, J. Decompression stripping of carbon dioxide from rich monoethanolamine through porous hydrophobic modified ceramic hollow fiber membrane contactor. Sep. Purif. Technol. 2020, 236, 116304. [Google Scholar] [CrossRef]
- Koonaphapdeelert, S.; Li, K. Preparation and characterization of hydrophobic ceramic hollow fiber membrane. J. Membr. Sci. 2007, 291, 70–76. [Google Scholar] [CrossRef]
- Lee, H.J.; Magnone, E.; Park, J.H. Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for CO2 capture using H2O as low-cost absorbent. J. Membr. Sci. 2015, 494, 143–153. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, J.H. Effect of hydrophobic modification on carbon dioxide absorption using porous alumina (Al2O3) hollow fiber membrane contactor. J. Membr. Sci. 2016, 518, 79–87. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, Y.G.; Kim, M.K.; Lee, S.H.; Park, J.H. Study on CO2 absorption performance of lab-scale ceramic hollow fiber membrane contactor by gas/liquid flow direction and module design. Sep. Purif. Technol. 2019, 220, 189–196. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, M.K.; Park, J.H.; Magnone, E.; Kim, M.K.; Park, J.H.; Magnone, E. Temperature and pressure dependence of the CO2 absorption through a ceramic hollow fiber membrane contactor module. Chem. Eng. Process. 2020, 150, 107871. [Google Scholar] [CrossRef]
- Ogunlude, P.; Abunumah, O.; Gobina, E. A study of gas diffusion characteristics on nano-structured ceramic membranes. Eur. J. Eng. Form. Sci. Artic. 2020, 4, 21–23. [Google Scholar] [CrossRef]
- An, L.; Yu, X.; Yang, J.; Tu, S.-T.; Yan, J. CO2 capture using a superhydrophobic ceramic membrane contactor. Energy Procedia 2015, 75, 2287–2292. [Google Scholar] [CrossRef] [Green Version]
- Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F. Membrane fouling in desalination and its mitigation strategies. Desalination 2018, 425, 130–155. [Google Scholar] [CrossRef]
- Xing, W.H. Membrane-Based Separations in Metallurgy; Jiang, L.Y., Li, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 357–370. [Google Scholar]
- Choudhury, R.R.; Gohil, J.M.; Mohanty, S.; Nayak, S.K. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. J. Mater. Chem. A 2018, 6, 313–333. [Google Scholar] [CrossRef]
- Zuriaga-Agustí, E.; Alventosa-Delara, E.; Barredo-Damas, S.; Alcaina-Miranda, M.; Iborra-Clar, M.; Mendoza-Roca, J. Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system. Water Res. 2014, 54, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Dilaver, M.; Park, P.-K.; Kim, J.H. Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. J. Membr. Sci. 2013, 432, 97–105. [Google Scholar] [CrossRef]
- Yang-Ying, Z.; Xiao-Mao, W.; Hong-Wei, Y.; Xie, Y.F. Effects of organic fouling and cleaning on the retention of pharmaceutically active compounds by ceramic nanofiltration membranes. J. Membr. Sci. 2018, 563, 734–742. [Google Scholar]
- Xu, P.; Huang, Y.; Kong, X.; Gong, D.; Fu, K.; Chen, X.; Qiu, M.; Fan, Y. Hydrophilic membrane contactor for improving selective removal of SO2 by NaOH solution. Sep. Purif. Technol. 2020, 250, 117134. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, M.K.; Lee, S.H.; Park, T.S.; Park, S.D.; Park, J.H. Integrated membrane contactor absorber/regeneration column process for CO2 capture with large scale module at various operating conditions. Catal. Today 2020, 358, 316–323. [Google Scholar] [CrossRef]
- Pang, H.; Chen, Z.; Gong, H.; Du, M. Fabrication of a super hydrophobic polyvinylidene fluoride–hexadecyltrimethoxysilane hybrid membrane for carbon dioxide absorption in a membrane contactor. J. Membr. Sci. 2020, 595, 117536. [Google Scholar] [CrossRef]
- Amirabedi, P.; Akbari, A.; Yegani, R. Fabrication of hydrophobic PP/CH3SiO2 composite hollow fiber membrane for membrane contactor application. Sep. Purific. Technol. 2019, 228, 115689. [Google Scholar] [CrossRef]
- Ain, R.N.; Awanis, H.N.; Aroua, M.K. Supported ionic liquid membranes (SILMs) as a contactor for selective absorption of CO2/O2 by aqueous monoethanolamine (MEA). Sep. Purific. Technol. 2019, 230, 115849. [Google Scholar]
- Li, C.; Thostenson, E.T.; Chou, T.W. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl. Phys. Lett. 2007, 91, 2837. [Google Scholar] [CrossRef]
- Lu, J.; Lu, C.; Chen, Y.; Gao, L.; Zhao, X.; Zhang, H.; Xu, Z. CO2 capture by membrane absorption coupling process. Appl. Energy 2014, 115, 573–581. [Google Scholar] [CrossRef]
- Shaikh, M.S.; Shariff, A.M.; Bustam, M.A.; Murshid, G. Physicochemical properties of aqueous solutions of sodium L-prolinate as an absorbent for CO2 removal. J. Chem. Eng. Data 2014, 59, 362–368. [Google Scholar] [CrossRef]
- Rahmawati, Y.; Nurkhamidah, S.; Susianto, S.; Listiyana, N.; Rahmatullah, M.; HarDIan, I. Effect of Activated Alkanolamine for CO2 Absorption using Hollow Fiber Membrane Contactor. IOP Conf. Ser. Mater. Sci. Eng. 2019, 543, 12080. [Google Scholar] [CrossRef]
- Saidi, M. Theoretical study of CO2 absorption into novel reactive 1DMA2P solvent in split-flow absorber-stripper unit: Mass transfer performance and kinetic analysis. Int. J. Chem. React. Eng. 2019, 17, 20190034. [Google Scholar] [CrossRef]
- Feng, Z.; Fang, M.; Wang, Z.; Fan, W. Study on the absorption of CO2 by amino acid salt membrane at room temperature and the influence of absorption liquid on membrane pore structure. Boiler Technol. 2016, 47, 72–78. [Google Scholar]
- Yan, S.; He, Q.; Zhao, S.; Wang, Y.; Ai, P. Biogas upgrading by CO2 removal with a highly selective natural amino acid salt in gas–liquid membrane contactor. Chem. Eng. Process. Process Intensif. 2014, 85, 125–135. [Google Scholar] [CrossRef]
- Lu, J.; Ji, Y.; Zhang, H.; Chen, M. CO2 capture using activated amino acid salt solutions in a membrane contactor. Sep. Sci. Technol. 2010, 45, 1240–1251. [Google Scholar] [CrossRef]
- Li, D. Carbon Dioxide Capture Characteristics and Reaction Kinetics of Potassium Lysine/Potassium Carbonate Composite Solution. Master’s Thesis, Huaqiao University, Quanzhou, China, 2017. [Google Scholar]
- Feng, X. Study on the Process of Arginine/Potassium Carbonate Compound Solution Absorbing Carbon Dioxide. Master’s Thesis, Hebei University of Science and Technology, Shijiazhuang, Hebei, China, 2013. [Google Scholar]
- Lu, J.; Zhang, H.; Ji, Y.; Liu, C.; Fan, F. Evaluation of CO2 gas capture performance of an amino acid salt-based composite solution. Chem. Eng. J. Chin. Univ. 2010, 24, 410–415. [Google Scholar]
- Nii, S.; Takeuchi, H. Removal of CO2 and/or SO2 from gas streams by a membrane absorption method. Gas Sep. Purific. 1994, 8, 107–114. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Zhang, Z.; Hu, X.; Cheng, Y.; Zhong, C. Carbon dioxide absorption from biogas by amino acid salt promoted potassium carbonate solutions in a hollow fiber membrane contactor: A numerical study. Energy Fuels 2018, 32, 3637–3646. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, Y.; Song, J.; Li, Y. Experimental studies of CO2 absorption enhancement in water-based nanofluids of carbon nanotubes. Braz. J. Chem. Eng. 2017, 34, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Golkhar, A.; Keshavarz, P.; Mowla, D. Investigation of CO2 removal by silica and CNT nanofluids in microporous hollow fiber membrane contactors. J. Membr. Sci. 2013, 433, 17–24. [Google Scholar] [CrossRef]
- Pang, C.; Lee, J.; Kang, Y. Review on combined heat and mass transfer characteristics in nanofluids. Int. J. Therm. Sci. 2015, 87, 49–67. [Google Scholar] [CrossRef]
- Tinge, J.; Drinkenburg, A. Absorption of gases into activated carbon-water slurries in a stirred cell. Chem. Eng. Sci. 1992, 47, 1337–1345. [Google Scholar] [CrossRef]
- Kim, W.; Kang, H.; Jung, K.; Kim, S. Synthesis of silica nanofluid and application to CO2 absorption. Sep. Sci. Technol. 2008, 43, 3036–3055. [Google Scholar] [CrossRef]
- Yoon, S.; Chung, J.T.; Kang, Y.T. The particle hydrodynamic effect on the mass transfer in a buoyant CO2-bubble through the experimental and computational studies. Int. J. Heat Mass Transf. 2014, 73, 399–409. [Google Scholar] [CrossRef]
- Lee, J.K.; Koo, J.; Hong, H.; Kang, Y.T. The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids. Int. J. Refriger. 2010, 33, 269–275. [Google Scholar] [CrossRef]
- Pineda, I.T.; Lee, J.W.; Jung, I.; Kang, Y.T. CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber. Int. J. Refriger. 2012, 35, 1402–1409. [Google Scholar] [CrossRef]
- Lee, J.W.; Kang, Y.T. CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution. Energy 2013, 53, 206–211. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Bhattacharya, P.; Phelan, P.E.; Prasher, R.S. Enhanced mass transport in nanofluids. Nano Lett. 2006, 6, 419–423. [Google Scholar] [CrossRef]
- Ansaripour, M.; Haghshenasfard, M.; Moheb, A. Experimental and numerical investigation of CO2 absorption using nanofluids in a hollow fiber membrane contactor. Chem. Eng. Technol. 2017, 41, 367–378. [Google Scholar] [CrossRef]
- Olle, B.; Bucak, S.; Holmes, T.C.; Bromberg, L.; Hatton, T.A.; Wang, D.I.C. Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Ind. Eng. Chem. Res. 2006, 45, 4355–4363. [Google Scholar] [CrossRef]
- Lu, S.; Xing, M.; Sun, Y.; Dong, X. Experimental and theoretical studies of CO2 absorption enhancement by nano-Al2O3 and carbon nanotube particles. Chin. J. Chem. Eng. 2013, 21, 983–990. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Khan, I.; Baleanu, D.; Nisar, K.S. Enhanced heat transfer in moderately ionized liquid due to hybrid MoS2/SiO2 nanofluids exposed by nonlinear radiation: Stability analysis. Crystals 2020, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fang, M.; Yan, S.; Yu, H.; Wei, C.-C.; Luo, Z. Optimization of Blended Amines for CO2 Absorption in a Hollow-Fiber Membrane Contactor. Ind. Eng. Chem. Res. 2013, 52, 12170–12182. [Google Scholar] [CrossRef]
- Sema, T.; Naami, A.; Fu, K.; Chen, G. Comprehensive mass transfer and reaction kinetics studies of a novel reactive 4-diethylamino-2-butanol solvent for capturing CO2. Chem. Eng. Sci 2013, 100, 183–194. [Google Scholar] [CrossRef]
- Cao, F.; Gao, H.; Gao, G.; Liang, Z. Mass transfer performance and correlation for CO2 absorption into aqueous 1-Dimethylamino-2-propanol (1DMA2P) solution in a PTFE hollow fiber membrane contactor. Chem. Eng. Process. Process Intensif. 2019, 136, 226–233. [Google Scholar] [CrossRef]
- Mohsin, H.M.; Shariff, A.M.; Johari, K. 3-Dimethylaminopropylamine (DMAPA) mixed with glycine (GLY) as an absorbent for carbon dioxide capture and subsequent utilization. Sep. Purif. Technol. 2019, 222, 297–308. [Google Scholar] [CrossRef]
- Talavari, A.; Ghanavati, B.; Azimi, A.; Sayyahi, S. Preparation and characterization of PVDF-filled MWCNT hollow fiber mixed matrix membranes for gas absorption by Al2O3 nanofluid absorbent via gas–liquid membrane contactor. Chem. Eng. Res. Des. 2020, 156, 478–494. [Google Scholar] [CrossRef]
- Jin, P.; Huang, C.; Shen, Y.; Zhan, X.; Hu, X.; Wang, L.; Wang, L. Simultaneous separation of H2S and CO2 from biogas by gas-liquid membrane contactor using single and mixed absorbents. Energy Fuels 2017, 31, 11117–11126. [Google Scholar] [CrossRef]
- Eslami, S.; Mousavi, S.; Danesh, S.; Banazadeh, H. Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor. Adv. Eng. Softw. 2011, 42, 612–620. [Google Scholar] [CrossRef]
- Gómez-Coma, L.; Garea, A.; Irabien, A. Mass Transfer Analysis of CO2 Capture by PVDF Membrane Contactor and Ionic Liquid. Chem. Eng. Technol. 2017, 40, 678–690. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G. Research on New Hydrophobic Hollow Fiber Membrane Structured Packing and Its Distillation Separation Mechanism and Characteristics. Ph.D. Thesis, Zhejiang University, Zhejiang, China, 2007. [Google Scholar]
- Yang, Z.; Zhang, G.; Lin, L.; Ren, D.; Meng, Q.; Zhang, H. Effects of baffles on separation of aqueous ethanol solution with hollow fibers. Front. Chem. Eng. China 2009, 3, 68–72. [Google Scholar] [CrossRef]
- Zhang, Z. A New Type of Membrane Contactor for Wastewater Deamination and Organic Acid Removal from Straw Acid Hydrolysate. Master’s Thesis, Tianjin University, Tianjin, China, 2016. [Google Scholar]
- Wang, S.; Hawboldt, K.; Abdi, M.A. Novel dual-membrane gas−liquid contactors: Modelling and concept analysis. Ind. Eng. Chem. Res. 2006, 45, 7882–7891. [Google Scholar] [CrossRef]
- Zhang, Z. The Absorption and Separation Performance of CO2 in Hollow Fiber Membranes and Its Adsorption Characteristics in PVA Promoting Transfer Membranes. Ph.D. Thesis, Chongqing University, Chongqing, China, 2015. [Google Scholar]
- Qazi, S.; Gómez-Coma, L.; Albo, J.; Druon-Bocquet, S.; Irabien, A.; Sanchez-Marcano, J. CO2 capture in a hollow fiber membrane contactor coupled with ionic liquid: Influence of membrane wetting and process parameters. Sep. Purif. Technol. 2020, 233, 115986. [Google Scholar] [CrossRef]
- Azari, A.; Abbasi, M.A.; Sanaeepur, H. CFD study of CO2 separation in an HFMC: Under non-wetted and partially-wetted conditions. Int. J. Greenh. Gas Control 2016, 49, 81–93. [Google Scholar] [CrossRef]
- McLeod, A.; Jefferson, B.; McAdam, E. The multiple benefits of high concentration electrolyte in chemisorption using a micro-porous hollow fibre membrane contactor (HFMC). Procedia Eng. 2012, 44, 953–954. [Google Scholar] [CrossRef] [Green Version]
- Tahvildari, K.; Razavi, S.; Tavakoli, H.; Mashayekhi, A.; Golmohammadzadeh, R. Modeling and simulation of membrane separation process using computational fluid dynamics. Arab. J. Chem. 2016, 9, 72–78. [Google Scholar] [CrossRef]
- Nakhjiri, A.T.; Heydarinasab, A.; Bakhtiari, O.; Mohammadi, T. The effect of membrane pores wettability on CO2 removal from CO2/CH4 gaseous mixture using NaOH, MEA and TEA liquid absorbents in hollow fiber membrane contactor. Chin. J. Chem. Eng. 2018, 26, 1845–1861. [Google Scholar] [CrossRef]
- Saidi, M. Mathematical modeling of CO2 absorption into novel reactive DEAB solution in hollow fiber membrane contactors; kinetic and mass transfer investigation. J. Membr. Sci. 2017, 524, 186–196. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, Y.; Zhang, L.; Chen, Y.; Ran, J.; Pu, G.; Qin, C. Theoretical study on CO2 absorption from biogas by membrane contactors: Effect of operating parameters. Ind. Eng. Chem. Res. 2014, 53, 14075–14083. [Google Scholar] [CrossRef]
Membrane Material | Gas | Absorbent | Highlight | Ref |
---|---|---|---|---|
Hydrophilic membrane | Sulfur dioxide | NaOH | The hydrophilic membrane contactor exhibited superior selectivity up to 114. | [57] |
Ceramic hollow fiber membrane | Flue gas | Monoethanolamine (MEA) | Process applicability and stability of the ceramic hollow fiber membrane module were both confirmed. | [58] |
Dual-layer PVDF SiO2 composite membrane | Flue gas | Diethanolamine (DEA) | Advantages of high gas permeability structure as well as high hydrophobicity. | [42] |
Porous hydrophobic modified ceramic hollow fiber membrane | Carbon dioxide | 30 wt% MEA | The novel technique reduces the stripping energy. | [59] |
Hybrid polyvinylidene fluoride-hexadecyltrimethoxysilane (PVDF–HDTMS) membrane | 19 vol.% carbon dioxide | 1 mol/L DEA | The membrane showed excellent long-term CO2 flux in the membrane contactor. | [59] |
Hydrophobic PP/CH3SiO2 composite hollow fiber membrane | 20 vol.% carbon dioxide | 30 wt% MEA | CO2 absorption flux of the nanocomposite membranes was stable within 30 days operation time. | [60] |
Supported ionic liquid membranes (SILMs) | Carbon dioxide/oxygen | MEA | Remarkable mechanical properties and hydrophobicity for membranes. | [61] |
Absorbent Type | Main Solvents | Advantages | Disadvantages | Ref. |
---|---|---|---|---|
Alcohol amine solvent | MEA, DEA, TEA, MDEA, PZ | The characteristics of fast absorption rate, large absorption capacity and simple regeneration | Easily cause corrosion to equipment, easy to degrade and easy to wet | [89] |
DEAB | Low energy consumption for degradation | [90] | ||
1-dimethylamino-2-propanol (1DMA2P) | High CO2 absorption capacity, regeneration energy of 1DMA2P is lower than that of MDEA, DEA, MEA, and PZ | High volatility of DMAPA and substantial energy requirement | [91] | |
3-Dimethylaminopropylamine (DMAPA) | The high removal efficiency and CO2 cyclic capacity | [92] | ||
Nanofluid absorbent | Al2O3 | Increased diffusion coefficient and increased reaction rate | High viscosity and high cost | [88] |
SiO2 | ||||
K2CO3 | K2CO3 | High surface tension with low tendency to membrane wetting thermal stability, low regeneration cost | High energy consumption, high heat capacity, strong corrosive | [93] |
Amino acid solutions (AASs) | Potassium L-argininate (PA) | Environmentally friendly, better affinity, lower solvent concentration, lower liquid velocity, and higher reaction temperature can be used | The reaction rate with CO2 is slow, generally mixed with other solutions for use | [93] |
Potassium lysinate (PL) | High gas absorption capacity, and has a higher chemical reactivity to CO2 | [87] | ||
Potassium sarcosine (PS) | Thermal stability and easy regeneration | [94] | ||
Potassium glycinate (PG) | High reactivity toward CO2 and less regeneration energy consumption | [95] | ||
Ionic liquids (ILs) | \ | Negligible volatility, high thermal stability, adjustability, solvation, high CO2 solubility | High cost, high viscosity, and high energy consumption in the regeneration process | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Ma, G.; Pan, Z.; Zhang, N.; Zhang, Z. Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors. Membranes 2020, 10, 380. https://doi.org/10.3390/membranes10120380
Li L, Ma G, Pan Z, Zhang N, Zhang Z. Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors. Membranes. 2020; 10(12):380. https://doi.org/10.3390/membranes10120380
Chicago/Turabian StyleLi, Linlin, Guiyang Ma, Zhen Pan, Na Zhang, and Zhien Zhang. 2020. "Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors" Membranes 10, no. 12: 380. https://doi.org/10.3390/membranes10120380
APA StyleLi, L., Ma, G., Pan, Z., Zhang, N., & Zhang, Z. (2020). Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors. Membranes, 10(12), 380. https://doi.org/10.3390/membranes10120380