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Abstract: The polymer electrolyte based on Dx:Cs:Mg(CH3COO)2:Ni with three different glycerol
concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.%
of glycerol (A3) has the highest ionic conductivity of 7.71× 10−6 S cm−1 at room temperature. The ionic
conductivity is found to be influenced by the transport parameters. From the dielectric analysis, it was
shown that the electrolytes in this system obeyed the non-Debye behavior. The A3 electrolyte exhibited
a dominancy of ions (tion > te) with a breakdown voltage of 2.08 V. The fabricated electrochemical
double layer capacitor (EDLC) achieved the specific capacitance values of 24.46 F/g and 39.68 F/g
via the cyclic voltammetry (CV) curve and the charge–discharge profile, respectively. The other
significant parameters to evaluate the performance of EDLC have been determined, such as internal
resistance (186.80 to 202.27 Ω) energy density (4.46 Wh/kg), power density (500.58 to 558.57 W/kg)
and efficiency (92.88%).

Keywords: ion conducting membrane; polymer blend; magnesium acetate; metal complex;
transport study; transference number measurement (TNM) and linear sweep voltammetry (LSV)
analyses; energy storage device

1. Introduction

The studies on solid polymer electrolytes have shown an excellent performance in electrochemical
devices applications such EDLCs [1,2]. These devices can provide a higher power and energy densities
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compared to batteries, and makes them functional in many applications such as hybrid vehicles,
electronics, and voltage stabilizers [1,2]. On the other hand, with a simple and economical fabrication
procedure, EDLCs have been acknowledged to offer an adequate performance which is found to
be a suitable candidate to replace a conventional battery [3–5]. In the fabrication process of EDLCs,
activated carbon is commonly chosen by researchers to build an electrode because it able to produce
high conductivity value and also has large surface area [6]. Furthermore, the fermentation process of
leuconostoc mesenteroides bacteria could grow a natural polymer called dextran (Dx), which has been
recently used in the preparation of solid polymer electrolyte [7–9]. The various oxygen functional groups
at the 1,6-α-D-glucopyranosidic linkages in Dx polymer chain helps to enhance the ionic conductivity
of the system [10]. Besides, chitosan (Cs) is also one of the natural polymers that are produced
from deacetylation of chitin and typically used in this field of research. The properties possessed
by Cs, such as low toxicity, biodegradability and biocompatibility, make it more preferable than other
polymers to be used in the preparation of solid polymer electrolyte [11,12]. Cs contains numerous
functional groups such as acetamido, amino and hydroxyl groups that could form interactions with
dative bonds as well as act as an electron donor [13,14]. The solid polymer electrolytes have also been
widely employed in electrochemical devices because they have good film forming ability, in addition
to desired mechanical and thermal characteristics [15,16]. Through polymer blending, more room will
be available for the ions to hope within the long lasting solid polymer electrolytes, which result in
rising the conductivity [17,18].

The ionic conductivity of an electrolyte is one of the significant factors to determine the performance
of the EDLCs. Many factors have been investigated, which might affect the ionic conductivity of
an electrolyte such as salt, plasticizer and metal complex. The good performance of Li+ ion-based
salt might have few drawbacks towards the ecosystem because they are not biodegradable [19].
Consequently, some alternatives have been introduced and applied to replace the Li+ ion in the
polymer electrolyte, such as NH4

+ and Mg2+ ions [20,21]. Syahidah et al. [22] stated that Mg(CF3SO3)2

salt is suitable to be used in polymer electrolyte because it is cost effective, abundance and also
easy to handle. Moreover, it was shown that the plasticized type of polymer electrolyte might
experience higher ionic conductivity [23]. This hypothesis has been proven in other polymer electrolyte
studies that using glycerol as the plasticizer for the system [24–26]. This is due to the glycerol ability
to produce more ionic pathways within the electrolyte that highly impacts the performance of an
electrochemical device [27,28]. In addition, the polymer electrolyte with metal complex also found to
achieve higher ionic conductivity by improving the amorphous phase of the system [29]. Brza et al. [29]
reported that the amorphousness of the PVA-based electrolyte was enhanced with the incorporation of
Cu(II)-complex by reducing the energy band gap and described as very beneficial for the application
of electrochemical devices.

Our previous work studied the effect of Zn(II)-complex in the chitosan-NH4F-glycerol system and
proved that the Zn metal assisted in enhancing the amorphousness of the electrolyte [30]. From the
above mentioned statements, these three elements are crucial to improve the characteristics of an
electrolyte especially the one that will be applied in the EDLC. In this current work, the blend of
40 wt.% Dx and 60 wt.% Cx is chosen to serve as the polymer host for this system because based on our
previous work [9,31], this composition was the most amorphous blend. The different concentration of
glycerol was added in the Dx-Cs based polymer electrolyte that complexed with magnesium acetate,
Mg(CH3COO)2 and nickel, Ni metal. Lastly, the EDLC will be fabricated by choosing the highest
conducting polymer electrolyte based on several parameters.

2. Experimental Details

2.1. Sample Preparation

All the chemical materials were bought from Sigma-Aldrich (Kuala Lumpur, Malaysia) and directly
used for the sample preparation. The polymer blend host was prepared by separately dissolving 0.4 g Dx
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(average molecular weight 35,000–45,000) and 0.6 g Cs (average molecular weight 310,000–375,000) in
50 mL of 1% acetic acid for 90 min under an ambient temperature level. These two different solutions
were mixed and stirred constantly for about 3 h at room temperature to obtain a homogeneous solution.
Next, 40 wt.% of Mg(CH3COO)2 salt was added to the polymer blend solution, which then stirred at
room temperature to obtain a homogeneous solution. Then, 10 mL of Ni metal was incorporated to the
solutions. Subsequently, different concentration of glycerol was separately added to the electrolyte
system and labeled as A1, A2 and A3 for the addition glycerol at the concentration of 14, 28, and 42 wt.%,
respectively. The solutions were then casted in clean and dry labeled Petri dishes and left to dry at
room temperature for films to form. Table 1 displays the composition of the electrolyte films.

Table 1. Designation of the polymer electrolytes with different amount of glycerol.

Glycerol (wt.%) Designation

12 A1
28 A2
42 A3

2.2. Characterization Methods

The prepared electrolytes were first tested to study the impedance properties, which carried out
within the frequency range of 50 Hz to 5 MHz by using a LCR meter (HIOKI 3531 Z Hi-tester, Nagano,
Japan) at room temperature. From the recorded impedance data, the ionic conductivity of an electrolyte
can be determined by employing the Equation (1) below.

σdc =
1

Rb
×

t
A

(1)

where the bulk resistance, Rb was determined from the intercept of the Cole–Cole plot at the Zr

axis while t and A represent the thickness and surface area of the polymer composite electrolyte.
Furthermore, the transference number measurement (TNM) of the ionic (tion) and electronic (telec)
were also identified in this study by using the cell polarization plot of current against time at room
temperature. The TNM study was only carried out for the highest conducting electrolyte where
it was placed in a teflon holder using similar stainless steel electrodes as illustrated in Figure 1.
The instrument used to conduct this measurement was the V&A Instrument DP3003 with a digital
DC power supply (Shanghai, China) and the system was polarized at a working voltage of 0.20 V
under an ambient temperature condition. In addition, the electrochemical stability of an electrolyte is
also a significant characteristic to study. This can be obtained by using a linear sweep voltammetry
(LSV) where it can record the decomposition voltage of an electrolyte at room temperature. A similar
electrolyte–electrodes arrangement as in TNM study was utilized with an involvement of the highest
conducting electrolyte only. A DY2300 potentiostate (Digi-Ivy, Neware, Shenzhen, China) was used to
record the LSV responses towards the electrolyte at 10 mV/s. Figure 1 shows a schematic illustration of
the electrolyte–electrodes arrangement for both TNM and LSV analyses.
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Figure 1. Schematic illustration of the electrolyte–electrodes arrangement for TNM and LSV studies.
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2.3. EDLC Fabrication

The EDLC was fabricated by preparing the activated carbon (AC) electrode where 0.25 g AC
was mixed with 3.25 g carbon black in the planetary ball miller. For this purpose, the powders with
six metal balls were put in the chamber. The powders were mixed at rotational speed of 500 r/min
for 15 min. Simultaneously, 0.50 g polyvinylidene fluoride (PVdF) was diluted in 15 mL N-methyl
pyrrolidone (NMP). Then, the mixture from ball miller was poured into the PVdF-NMP solution and
was stirred to obtain a thick, black solution. Consequently, an amount of acetone was used to clean
an aluminum foil which then flattened on a glass surface. The prepared black solution was evenly
spread on the surface of aluminum foil using doctor blade technique. It was left to dry in oven under
temperature of 60 ◦C and then was placed in a desiccator for further drying. The arrangement of the
highest conducting electrolyte and AC electrodes in the EDLC is shown in Figure 2 by using a CR2032
coin cell.
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Figure 2. Schematic illustration of the fabricated EDLC for characterization.

3. Results and Discussion

3.1. Impedance Study

The impedance plot of the electrolyte with various glycerol concentrations at room temperature
is depicted in Figure 3 where a spike and a semicircle is noted to exist at low and high frequencies,
respectively [32]. The semicircle arc is due to the conduction of charges in the bulk of the electrolyte
that corresponds to the parallel combination of Rb and a constant phase element (CPE1), while the
spike represents the accumulation of charge in polarization process that represented by CPE2, which is
also a feature of a diffusion mechanism [33,34]. It is clearly detected that the semicircle in Figure 3 is
getting smaller with the addition of glycerol, which attributed to prevalence of the resistive part in
the electrolyte, hence causing the intercept of Rb with Zr axis to decrease [35]. The impedance of CPE
(ZCPE) can be expressed as [36,37]:

ZCPE =
1

Cωp

[
cos

(πp
2

)
− i sin

(πp
2

)]
(2)

where C is the capacitance of CPE, ω is the angular frequency and p is associated with the deviation of
the plot from the axis. For the plots that consist of semicircle and spike, the Zr and Zi of the equivalent
circuits can be obtained via the following equations:

Zr =
RbC1ωp1 cos

(πp1
2

)
+ Rb

2RbC1ωp1 cos
(πp1

2

)
+ R2

bC2
1ω

2p1 + 1
+

cos
(πp2

2

)
C2ωp2

(3)
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Zi =
R2

bC1ωp1 sin
(πp1

2

)
2RbC1ωp1 cos

(πp1
2

)
+ R2

bC2
1ω

2p1 + 1
+

sin
(πp2

2

)
C2ωp2

(4)

where p2 and p1 are the deviation of the spike from the horizontal axis and deviation semicircle from
the vertical axis, respectively. The capacitances at high and low frequency are represented as C1 and C2,
respectively. The determined Rb value and calculated CPE values are tabulated in Table 2.
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Figure 3. Cole–Cole plot for (A1), (A2) and (A3) electrolytes.

Table 2. The parameter of circuit element for the electrolyte system with different glycerol concentration
at room temperature.

Electrolyte Rb (Ω) CPE1 (F) CPE2 (F)

A1 3.00 × 105 5.00 × 10−10 5.88 × 10−7

A2 5.80 × 103 2.50 × 10−9 5.56 × 10−6

A3 2.00 × 103 3.33 × 10−9 6.06 × 10−6

Based on Table 2, the value of CPE is higher at low frequency compared to high frequency.
This phenomenon corresponds to the following equation:

C =
εoεrA

d
(5)
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where d is the thickness of the polymer composite electrolyte while A symbolizes the contact area. εr and
εo stand for dielectric constant and vacuum’s permittivity. The value of εr is high at lower frequency
region which in turn giving a high value of C [38]. According to Guan et al. [39], the divalent Mg2+

ion has attracted towards the lone pair of oxygen atoms while the CH3COO− anion has delocalized
negative charges, which can be stabilized by the resonance stabilization and makes it as a good leaving
group. This phenomenon is beneficial for the ion dissociation hence, enhance the ionic mobility and
conductivity [40]. From the obtained Rb values in Table 2, the ionic conductivity of the electrolytes at
room temperature can be calculated using the Equation (1) as listed in Table 3.

Table 3. Ionic conductivity for the electrolyte system with different glycerol concentration at room temperature.

Electrolyte Ionic Conductivity, σ (S cm−1)

A1 5.14 × 10−8

A2 2.66 × 10−6

A3 7.71 × 10−6

The addition of glycerol into the electrolyte able to improve room temperature conductivity of the
current system, which optimized at the highest value of 7.71 × 10−6 S cm−1 that possessed by the A3
electrolyte. This achievement can realize the electrolyte as a promising magnesium ion conductor for
the electrochemical devices applications. The ionic conductivity in this work is influenced by several
variables where their correlation can be expressed as:

σ = µne (6)

where µ, n and e are the concentration of the mobility of ions, number density of free ions and the
charge of electron, respectively [41]. The ionic conductivity increment of the electrolyte is caused by the
increase in the number of n and µ and the reduction of potential barrier in the system, which correlated
with the enhancement of the amorphous nature of the electrolyte. The glycerol plasticizer can dissociate
more salts and disrupt hydrogen bonding between polymer chains [25,27]. Thus, this improve the
overall amorphous phase of the prepared samples, which acts as a pathway for ion conduction [25,27].
Additionally, more free ions will be available for conduction. The impedance study is support this
interpretation. Besides, the CH3COO− anion will penetrate into the polymer matrix and create an
attractive force between plasticizer molecules and chain segments where these forces will reduce the
cohesive attraction between polymer chains that caused the segmental mobility to increase hence
further enhance the ionic conductivity [42].

3.2. Dielectric and Electric Modulus Studies

To more understanding the polarization effects and the conductivity performance of the electrolyte
system, dielectric analysis is carried out. The dielectric constant, εr signifies the charge stored and the
dielectric loss, εi is the value of energy loss during the ions movement within the electrolytes [43].
The values of dielectric loss and dielectric constant can be calculated using the following expressions
where the vacuum capacitance, Co is included.

εr =
Zi(

Z2
r + Z2

i

)
Coω

(7)

εi =
Zr(

Z2
r + Z2

i

)
Coω

(8)

The plots of both dielectric properties are shown in Figure 4. The highest conducting electrolyte,
A3 is observed to achieve the highest dielectric properties values at a lower frequency but then
decreases as the frequency increased. This displays that the addition of glycerol may supports in
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enhancing the dielectric values and the number of free ions. The high values achieved from this
dielectric study described the space charge effects as well as the electrode polarization that contributed
by the accumulation of charge carriers [44,45]. This phenomenon explained that the electrolytes in this
work obeyed the non-Debye behavior. However, the decrement of dielectric values at high frequency
may due to the rapid periodic reversal of the electric field [46]. Besides, the plots of dielectric properties
also did not exhibit any peaks of dielectric relaxation, which means the system is dominantly due to
the polymer relaxation segments in the ionic conductivity [47]. The dielectric loss tangent (tanδ) is
plotted as in Figure 5 to solve the relaxation processes.

Membranes 2020, 10, x FOR PEER REVIEW 7 of 21 

 

enhancing the dielectric values and the number of free ions. The high values achieved from this 

dielectric study described the space charge effects as well as the electrode polarization that 

contributed by the accumulation of charge carriers [44,45]. This phenomenon explained that the 

electrolytes in this work obeyed the non-Debye behavior. However, the decrement of dielectric values 

at high frequency may due to the rapid periodic reversal of the electric field [46]. Besides, the plots of 

dielectric properties also did not exhibit any peaks of dielectric relaxation, which means the system 

is dominantly due to the polymer relaxation segments in the ionic conductivity [47]. The dielectric 

loss tangent (tanδ) is plotted as in Figure 5 to solve the relaxation processes. 

 
(a) 

 
(b) 

Figure 4. The plot of (a) 𝜀𝑟 and (b) 𝜀𝑖  for the electrolyte system. 

0

20,000

40,000

60,000

1 2 3 4 5 6 7

e r

Log f (Hz)

A1

A2

A3

0

20,000

40,000

60,000

1 2 3 4 5 6 7

e i

Log f (Hz)

A1

A2

A3

Figure 4. The plot of (a) εr and (b) εi for the electrolyte system.



Membranes 2020, 10, 389 8 of 20

Membranes 2020, 10, x FOR PEER REVIEW 8 of 21 

 

The tan δ is a ratio of energy dissipate to energy stored in a periodical field, which is also known 

as dissipation factor [48]. The value of tan δ can be calculated this equation: 

tan 𝛿 =
𝜀𝑖

𝜀𝑟
 (9) 

 

Figure 5. The plot of tan 𝛿 with respect to log f. 

Based on Figure 5, the peaks observed are explained as the translational ion dynamics that 

related to the mobile ions conductivity relaxation which further explained the decrease in segmental 

motion within the polymer electrolyte that beneficial to support the transportation of ions [49]. The 

broad tan 𝛿  peaks in Figure 5 also signifies that the relaxation process is following non-Debye 

behavior [50]. Furthermore, the polarization suppression effect of the system can be analyzed through 

the electrical modulus as plotted in Figure 6. The real part (Mr) and imaginary part (Mi) of electrical 

modulus can be determined using these relations:  

𝑀𝑟 =
𝜀𝑟

𝜀𝑟
2 + 𝜀𝑖

2 (10) 

𝑀𝑖 =
𝜀𝑖

𝜀𝑟
2 + 𝜀𝑖

2 (11) 

At low frequencies, Mr and Mi approach to zero because the electrode polarization is dominant 

and no dispersion is observed [31]. Long tail at low frequencies indicates the capacitive behavior. The 

highest conducting electrolyte will produce the lowest Mr and Mi values at a high frequency. The 

presence of peaks in both modulus plots explain that the electrolytes are good ionic conductors at 

higher frequencies [51].  

0

5

10

15

20

1 2 3 4 5 6 7

ta
n

 d

Log f (Hz)

A1

A2

A3

Figure 5. The plot of tan δ with respect to log f.

The tan δ is a ratio of energy dissipate to energy stored in a periodical field, which is also known
as dissipation factor [48]. The value of tan δ can be calculated this equation:

tan δ =
εi
εr

(9)

Based on Figure 5, the peaks observed are explained as the translational ion dynamics that related
to the mobile ions conductivity relaxation which further explained the decrease in segmental motion
within the polymer electrolyte that beneficial to support the transportation of ions [49]. The broad
tan δ peaks in Figure 5 also signifies that the relaxation process is following non-Debye behavior [50].
Furthermore, the polarization suppression effect of the system can be analyzed through the electrical
modulus as plotted in Figure 6. The real part (Mr) and imaginary part (Mi) of electrical modulus can
be determined using these relations:

Mr =
εr

ε2
r + ε2

i

(10)

Mi =
εi

ε2
r + ε2

i

(11)

At low frequencies, Mr and Mi approach to zero because the electrode polarization is dominant
and no dispersion is observed [31]. Long tail at low frequencies indicates the capacitive behavior.
The highest conducting electrolyte will produce the lowest Mr and Mi values at a high frequency.
The presence of peaks in both modulus plots explain that the electrolytes are good ionic conductors at
higher frequencies [51].
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3.3. Transport Study

Based on Equation (6), two significant parameters, n and µ, are important to influence as well as
support the ionic conductivity of the electrolytes. According to Arof et al. [52], these ionic transport
parameters can be evaluated using the electrical impedance spectroscopy (EIS) approach by fitting the
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impedance curve in Figure 3. This method expressed diffusion coefficient, D using the Equation (12)
for the Cole–Cole plots with semicircles and spikes.

D =
(k2εoεrA)2

τ2
(12)

The Equation (12) required the τ2, which represents the inverse of ω at the minimum value of Zi.
Fadzallah et al. [53] mentioned that εr was taken from a constant value of log εr in the transport
study, while Yusof et al. [54] mentioned in their report that εr was taken at log f > 5 where the
values were almost constant. The µ values can be determined by substituting Equation (12) into the
following equation:

µ =
eD
kBT

(13)

where kB and T are the Boltzmann constant and an absolute temperature, respectively. Table 4 provides
the values of p2, k2, εr and τ2 for the electrolytes in this work.

Table 4. The calculated values of p2, k2, εr and τ2 for the electrolyte system.

Electrolyte p2 k2 (F−1) εr τ2 (s)

A1 0.38 1.70 × 106 4.76 2.65 × 10−4

A2 0.49 1.80 × 105 10.64 5.89 × 10−6

A3 0.60 1.65 × 105 12.72 4.86 × 10−6

By using the Equations (6), (12) and (13), the transport parameter can be obtained as listed in
Table 5 for the electrolytes in this work. The trend of the transport parameters are harmonized with
the ionic conductivity pattern where the addition of glycerol helped to increase the values and the
highest conducting electrolyte possesses the highest transport parameters values. Pritam et al. [55]
also reported the similar trend where the increase in transport parameter values were possibly related
to the low degree of crystallinity of an electrolyte. Thus, this would improve the segmental motion
within the polymer chain, which therefore the electrolyte would achieve a high ionic conductivity [55].

Table 5. The calculated transport parameters for the electrolyte system.

Electrolyte n (cm−3) µ (cm2V−1s−1) D (cm2s−1)

A1 5.20 × 1019 6.17 × 10−9 1.58 × 10−10

A2 2.32 × 1021 7.14 × 10−9 1.83 × 10−10

A3 5.50 × 1021 8.75 × 10−9 2.25 × 10−10

3.4. Transference Number Measurement (TNM)

To determine which charge carrier species is dominant within the electrolytes, a measurement
called TNM was conducted in this work. Figure 7 shows the plot of current versus time for the A3
electrolyte. The electrolyte is mostly due to ions if the ionic transference number, tion value is larger
than the transference number of electron, te where these both values can be determined using the
following expressions that initial current, Ii and steady state current, Iss are involved [56].

tion =
Ii − Iss

Ii
(14)

te =
Iss

Ii
(15)
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Figure 7. The plot of current versus time for the A3 electrolyte.

Based on the polarization plot in Figure 7, the Ii is noticed to drastically decrease as the time
increased. This is because the ionic species in the electrolyte is dropped at this stage and leading
towards Iss when the species is completely reduced [57]. Besides, the decrement of ionic species is
caused by the blockage of ions flows due to stainless steel electrodes that only allow the electron to
move [58]. The diffusion process is beneficial at Iss to balance the mobile ions movements [59]. In this
study, the A3 electrolyte achieved a high tion value which is 0.9936 while the te is 0.0064. This result has
signified that the electrolyte consists of more ions compared to electrons and also agreed with other
studies [30,60].

3.5. Linear Sweep Voltammetry (LSV) Study

The LSV study is carried out to reveal the breakdown voltage of an electrolyte at room
temperature [61]. Figure 8 depicts the LSV plot up to 4.0 V for the A3 electrolyte.
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The plot of current density versus voltage as shown in Figure 8 reveals the raise of voltage
without any current flows involved until 2.08 V, which explain that the reaction of electrochemical
in the electrolyte did not occur at this stage [62]. This phenomenon indicates that the breakdown
voltage of the electrolyte is at 2.08 V, which is comparable as reported in the literature [63]. Hence,
this result shows that the ability of this electrolyte to deliver a promising performance in the EDLC
that is normally run at the operating voltage of 1.0 V [64].

3.6. Characterization of the EDLC

The cyclic voltammetry (CV) measurement is one of the crucial analyses to identify the charge
storage and charge transfer behaviors in the fabricated EDLCs. This measurement was conducted
using a pentiostat (Digi-IVY DY2300) (Neware, Shenzhen, China) at different scan rates, v as shown in
Figure 9. The specific capacitance from CV analysis can be calculated via the following equation where
the area of the CV curve, I (V) dV and the mass of active materials, m are involved [65]. The voltage
range for CV measurement was between 0.0 V (V1) to 0.9 V (V2).

Cs =

∫ V2

V1

I(V)dV
2mv(V2 −V1)

(16)
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The CV curves in Figure 9 exhibit that as the scan rate increases, the shape of the curve changes
from rectangular shape to a leaf-like shape. These changes are caused by the existence of the porosity
of the carbon electrodes and the internal resistance presents during the measurement [66]. The curves
also depicted without any noticeable peaks that further explained the system did not undergo any
reduction/oxidation reaction. The anions within the system will flow towards the positive electrode
during the charging process where the positive electrode will repel the cations so that the cations will
attracts to the negative electrode. The electric field during this process embraces the electrode and
electrolyte to hold the electrons and ions, respectively [67]. These processes are the explanation for the
formation of double-layer charge to store the potential energy on the carbon electrodes surfaces [68].
The calculated specific capacitance, Cs from CV curves analysis is listed in Table 6 at various scan rates.
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Table 6. Specific capacitance, Cs of the EDLC at different scan rates.

Scan Rate (mV/s) Specific Capacitance (F/g)

100 4.18
50 8.46
20 17.15
10 24.46

The low Cs value at higher scan rate is because the energy loss is high at these scan rates due to the
reduction of the amount of stored charges, which exhibits lower Cs value [69]. Further characterization
of the fabricated EDLC involved the charge–discharge profile, as shown in Figure 10, using the
Galvanostatic technique by employing a Neware battery cycler. This profile is valuable to determine
the cyclic durability of the system as well as their capacitive behavior. The capacitive behaviour in
the EDLC is comfirmed when the discharge slope is near to a straight line or linear curve [70]. As a
comparison to the Cs values from CV studies, the Cs values also can be calculated from the profile in
Figure 10 by using the equation below and the obtained values are plotted in Figure 11.

Cs =
i

ms
(17)
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Figure 10. Charge–discharge curves at the selected cycles.

The calculated Cs value for the first cycle is 39.68 F/g, which is slightly higher than the values
obtained from CV analysis. This difference is reliable because both analyses display the capacitive
properties of the EDLC [71]. At the 40th cycle, Cs value is increased to 50.34 F/g and then maintained
at an average of 48.19 F/g until the system completed the 100 cycles. The achievement based on the
satisfactory specific capacitance values obtained by the EDLC, it can be concluded that the electrolyte in
this work is suitable enough to be applied in the electrochemical devices applications. Moreover, a tiny
voltage drop, Vd is noticed in the charge–discharge profile as shown in Figure 10. The existence of Vd
can be attributed to the internal resistance within the system during the charge–discharge processes,
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which also called as equivalent series resistance (ESR). The determination of this parameter will involve
the applied current, i of 1.5 mA and can be expressed as:

ESR =
Vdrop

i
(18)
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Figure 11. Specific capacitance, Cs of the fabricated EDLC.

The obtained ESR values for 100 cycles are illustrated in Figure 12, where 189.33 Ω is observed at
the first cycle. Throughout the whole processes, the system is noticed to maintain its ESR at the range
of 186.80 to 202.27 Ω. This result shows that the EDLC has a small and constant internal resistance for
100 cycles which simplifies the electrostatic process between the ions and charged electrode [72].
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Figure 12. Equivalent series resistance, ESR of the fabricated EDLC.
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Figure 13 depicts the calculated energy and power densities of the EDLC for 100 cycles. The values
are determined from the Equations (19) and (20), where the operating voltage value, V, is included,
which is at 0.9 V.

E =
CsV2

2
(19)

P =
V2

4m(ESR)
(20)
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Figure 13. Energy density and power density of the fabricated EDLC.

Based on Figure 13, the EDLC in this work achieved the energy density of 4.46 Wh/kg at the
first cycle. Then, the energy density is steadily increased to 5.66 Wh/kg (40th cycle), which remained
around 5.42 Wh/kg until the cycle is completed. The pattern of energy density agrees with the specific
capacitance trend in Figure 11, which described that the required amount of energy for the charge
carriers in each cycle of the charge–discharge process is almost equivalent in order to move towards the
electrodes surfaces [73]. On the other hand, the plot of power density in Figure 13 shows a comparable
trend as the ESR plot. The range of power density for the fabricated EDLC in this work is between
500.58 to 558.57 W/kg. The almost-consistent values throughout the 100 cycles clarifies that ELDC
possesses the capacitive characteristics [74]. This also means that the electrolyte consists of enormous
amount of free ions, which contributed to the formation of a double layer [75]. Lastly, the performance
of EDLCs can be analyzed using the Columbic efficiency, η where the stability of each cycle can be
revealed as plotted in Figure 14. This parameter involves the time of discharging, td as well as charging,
tc, which can be expressed using the following equation:

η =
td
tc
× 100 (21)

The fabricated EDLC has a low efficiency of 57.89% at the first cycle. However, the performance
is found to enhance for the next cycle until the EDLC completed the 100 cycles where the efficiency
values are consistent at an average of 92.88%. This result suggests that the system presents an excellent
performance in electrochemical devices with good contact of electrolyte–electrode because the efficiency
is above 90.0% [76].
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4. Conclusions

The polymer electrolytes based on Dx:Cs:Mg(CH3COO)2:Ni with three different glycerol
concentration have been well-prepared. The impedance study has verified that the electrolyte with
42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10−6 S cm−1 at room temperature.
The ionic conductivity is found to be influenced by the transport parameters. The understanding from
dielectric analysis revealed that the electrolytes in this system obeyed the non-Debye behavior. The A3
electrolyte exhibited a dominancy of ions (tion > te) with a breakdown voltage of 2.08 V. The fabricated
EDLC achieved the specific capacitance values of 24.46 F/g and 39.68 F/g via CV curve and the
charge–discharge profile, respectively. The other significant parameters to evaluate the performance
of EDLC have been determined, such as internal resistance (186.80 to 202.27 Ω), energy density
(4.46 Wh/kg), power density (500.58 to 558.57 W/kg) and efficiency (92.88%). These results imply that
the system presents an excellent performance in some electrochemical devices with a good contact of
electrolyte–electrode because the efficiency is above 90.0%.
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