Supplementary Materials

for

Leveraging Nanocrystal HKUST-1 in Mixed-matrix Membranes for Ethylene/Ethane Separation

Chong Yang Chuah ¹, S.A.S.C. Samarasinghe ¹, Wen Li ², Kunli Goh ^{1,*} and Tae-Hyun Bae ^{3,*}

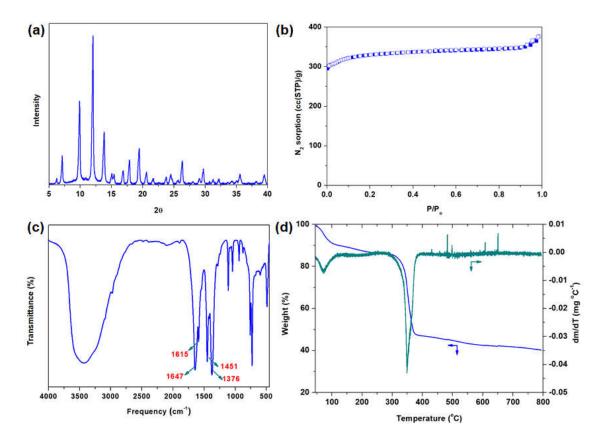

- ¹ Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; chongyang.chuah@ntu.edu.sg (C.Y.C); samarasi001@e.ntu.edu.sg (S.A.S.C.S.); gohkunli@ntu.edu.sg (K.G.)
- ² School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; liwe0025@e.ntu.edu.sg (W.L.)
- ³ Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; thbae@kaist.ac.kr (T-H.B.)
- * Correspondence: gohkunli@ntu.edu.sg; thbae@kaist.ac.kr

Table S1. Fitting parameters for C_2H_4 and C_2H_6 for membranes at 35 °C.

Unit of p = bar; Unit of $q = mmol g^{-1}$

$$q = \frac{q_{sat}b_1p}{1+b_1p}$$

Sample	gas	$q_{sat,1}$	$\boldsymbol{b}_{\mathrm{l}}$	R² value
ODPA-TMPDA	C_2H_4	1.111	1.533	0.9974
	C ₂ H ₆	1.459	0.7410	0.9896
ODPA-TMPDA + 20 wt% HKUST-1	C ₂ H ₄	1.153	3.207	0.9998
	C ₂ H ₆	1.318	1.599	0.9928
6FDA-TMPDA	C ₂ H ₄	1.032	1.698	1
	C ₂ H ₆	0.9732	2.181	0.9999
6FDA-TMPDA + 20 wt% HKUST-1	C ₂ H ₄	1.147	2.588	0.9964
	C2H6	1.121	3.231	0.9978

Figure S1. Characterization of nanocrystal HKUST-1, showing (a) X-ray diffraction pattern; (b) N² physisorption isotherm at 77 K (open and closed symbols indicate adsorption and desorption branches, respectively); (c) FT-IR spectrum, as well as (d) TGA curves, showing weight loss and dm/dT against temperature, of nanocrystal HKUST-1 from 40 to 800 °C.

Table S2. Porosity properties of nanocrystal HKUST-1 based on N2 physisorption at 77 K.

S _{BET} ^[a] (m ² /g)	$S_{\text{LANG}^{[a]}}(m^2/g)$	S _{micro} ^[b] (m ² /g)	V _{micro} ^[b] (cc/g)	V _{total} ^[c] (cc.g)
1125	1464	1087	0.502	0.585

Note: $[a]P/P_0$ range from 0.05 to 0.2 was used to determine the BET and Langmuir surface area; [b]t-plot method was used to calculate the micropore surface area and volume, by choosing the P/P_0 range from 0.4 to 0.6; $[c]P/P_0 = 0.99$ was used to calculate the total pore volume.

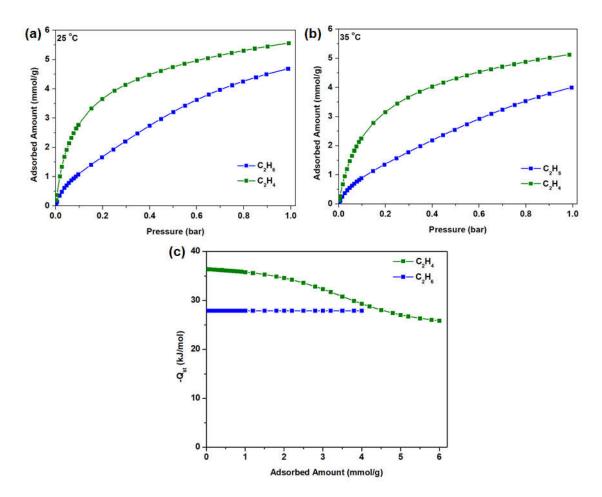


Figure S2. C2H4 and C2H6 adsorption of HKUST-1 at (a) 25 °C and (b) 35 °C; (c) -Qst of HKUST-1 for

C₂H₄ and C₂H₆.

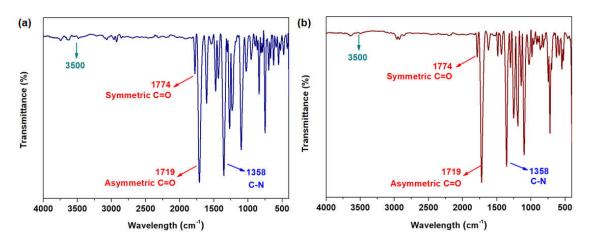
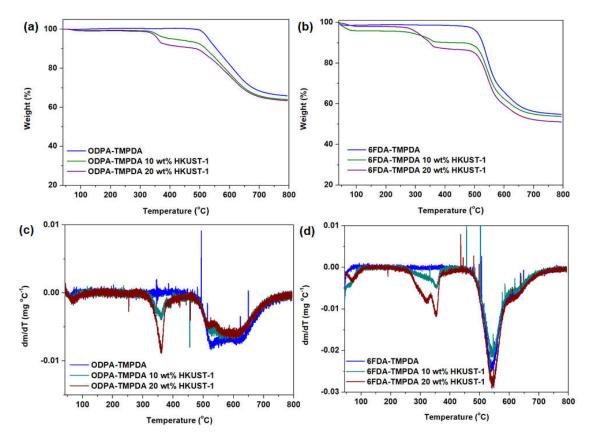



Figure S3. FT-IR spectrum of (a) ODPA-TMPDA and (b) 6FDA-TMPDA polymer.

Figure S4. TGA analysis **(a, b)** weight loss against temperature and **(c, d)** *dm/dT* against temperature of 10 wt% and 20 wt% nanocrystal HKUST-1 loading in **(a, c)** ODPA-TMPDA and **(b, d)** 6FDA-TMPDA polymer.

Table S3. Fitting parameters for C2H4 and C2H6 for HKUST-1 at 25 and 35 °C.

Unit of p = bar; Unit of $q = mmol g^{-1}$

$$q = \frac{q_{sat,1}b_1p}{1+b_1p} + \frac{q_{sat,2}b_2p}{1+b_2p}$$

Sample	gas	q _{sat,1}	b 1	$q_{sat,2}$	b ₂	R ² value
HKUST-1 (25 °C)	C2H4	3.563	1.574	3.498	20.29	0.9998
	C ₂ H ₆	7.208	1.697	-	-	0.9921
HKUST-1 (35 °C)	C ₂ H ₄	3.563	1.145	3.498	12.44	1
	C2H6	7.208	1.178	-	-	0.9921