Supplementary Information for

Enhanced O₂/N₂ Separation of Mixed-matrix Membrane Filled with Pluronic-compatibilized Cobalt Phthalocyanine Particles

S.A.S.C Samarasinghe ^{1,2,+}, Chong Yang Chuah ^{1,+}, H. Enis Karahan ^{1,3,+},

G.S.M.D.P. Sethunga ^{1,2}, and Tae-Hyun Bae ^{1,4,*}

- ¹ Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- ² Interdisciplinary Graduate School, Nanyang Technological University, Singapore
 637335, Singapore
- ³ School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- ⁴ Department of Chemical and Biomedical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-338, Republic of Korea
- * Correspondence: thbae@kaist.ac.kr
- ⁺ These authors contributed equally to this work

Figure S1. Characterization of the facilitated carrier (CoPCMP) and compatibilizer (Pluronic) by **(a)** FTIR; **(b)** powder XRD; **(c)** TGA and **(d)** DTA analysis (for the case of Pluronic, due to its onset of degradation occurs at around 200 °C; thus the DTA curve beyond 200 °C is indicated as dotted line).

Figure S2. N₂ sorption for CoPCMP at 77 K.

Sample	S _{BET} ^a	S _{Langmuir} a	V _{micro} b	S _{ext} ^b	V _{total} ^c
	(m²/g)	(m²/g)	(cc/g)	(m²/g)	(cc/g)
CoPCMP	2.91	4.12	0	2.89	0.0067

Table S1. Porosity properties of CoPCMP.

 a SBET and SLangmuir are calculated by selecting P/P_o range from 0.05–0.20.

 $^{\rm b}$ V_{micro} and S_{ext} are calculated using *t*-plot method, with P/P₀ ranging from 0.40–0.60 is selected.

 $^{\rm c}$ V_{total} is calculated at P/Po = 0.99.

Figure S3. (a) TGA and **(b)** TDA of neat (Matrimid), blended (Matrimid-Pluronic) and composite (Matrimid-CoPCMP and Matrimid-Pluronic-CoPCMP) membranes.

Figure S4. Cross-sectional FESEM image of Matrimid-CoPCMP (10 wt%) under (a) low magnification; (b) high magnification.

Membranes	Tensile Strength (MPa)	Young Modulus (MPa)
Matrimid	46.6 <u>+</u> 2.0	2074 <u>+</u> 33
5 wt% Pluronic	65.8 <u>+</u> 4.3	1287 <u>+</u> 64
10 wt% Pluronic	55.3 <u>+</u> 5.9	1286 <u>+</u> 97

Table S2. Mechanical test of neat (Matrimid) and blended (Matrimid-Pluronic) membranes.

Figure S5. Comparison of the membrane performance (in **Table 1**) with the upper bound limit (1991, 2008, 2015) [1-3].

Figure S6. EDX mapping of 5 wt% CoPCMP and 10 wt% Pluronic in Matrimid membranes.

Figure S7. Solubility and diffusivity selectivity of the studied membranes.

References

- 1. Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. *J. Membr. Sci.* **1991**, *62*, 165-185.
- 2. Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390-400.
- 3. Swaidan, R.; Ghanem, B.; Pinnau, I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. *ACS Macro Lett.* **2015**.