Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization
Abstract
:1. Introduction
2. A Brief Oversight into Reverse Osmosis (RO) and Electrodialysis (ED)
2.1. Reverse Osmosis
Trend in Energy Consumption of Reverse Osmosis
2.2. Electrodialysis
Trend in Energy Consumption and Shortcomings of Electrodialysis
3. Capacitive Deionization Systems
3.1. Principle of Ion Adsorption
3.2. How Does Capacitive Deionization (CDI) Work?
4. Electrode Materials
4.1. Carbon Electrodes with Various Morphologies and Porosities
4.2. Hybrid Carbon-Based Electrodes
4.3. Alternative Carbon Source-Based Electrodes
4.4. Carbon Electrodes Modified by Nitrogen Doping
4.5. Carbon-Based Electrodes in Alternatives Applications
5. CDI Treatment Objective, Performance, and Parameters: Process Considerations
5.1. Criteria of CDI Performance Evaluation
5.1.1. Maximum Salt Adsorption Capacity (mSAC)
5.1.2. Average Salt Adsorption Rate (ASAR)
5.1.3. Current Efficiency (CE)
5.1.4. Specific Energy Consumption (SEC)
5.1.5. Electrode Stability (STAB)
5.2. Some CDI Operating Process Performance Parameters
5.2.1. Difference of Electrical Potential
5.2.2. Hydraulic Retention Time (HRT)
5.2.3. Hydrodynamics
5.3. Cell Geometries of CDI
5.3.1. Flow-by CDI
5.3.2. Flow-through CDI
6. Membrane Capacitive Deionization (MCDI)
7. Flow Capacitive Deionization (FCDI)
Energy Recovery in FCDI
8. Summary, Challenges, and Future Perspectives in Desalination
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CEM | Cation exchange membrane |
AEM | Anion exchange membrane |
SWCNT | Single wall carbon nanotube |
GO | Graphene oxide |
PANI | Polyaniline |
FGraphene | Functionalized grapheme |
FCNT | Functionalized carbon nanotube |
3DGR | 3-dimensional graphene |
NG-CNFs | Nitrogen doped carbon nanofibers |
References
- Fry, L.M.; Mihelcic, J.R.; Watkins, D.W. Water and non-water related challenges of achieving global sanitation coverage. Environ. Sci. Technol. 2008, 42, 4298–4304. [Google Scholar] [CrossRef] [PubMed]
- Borsani, R.; Rebagliati, S. Fundamental and costing of multi stage flash desalination plants and comparison with other technologies. Desalination 2005, 182, 29. [Google Scholar] [CrossRef]
- Wangwang, T.; Di, H.; David, T.W.; Changyong, Z. Various cell architectures of capacitive deionization: Recent advances and future trends. Water Res. 2019, 150, 225–251. [Google Scholar]
- Murphy, G.; Tucker, J. The demineralization behavior of carbon and chemically modified carbon electrodes. Desalination 1966, 1, 247–259. [Google Scholar] [CrossRef]
- Oren, Y. Capacitive deionization (CDI) for desalination and water treatment—Past, present and future (a review). Desalination 2008, 228, 10–29. [Google Scholar] [CrossRef]
- Wang, L.; Lin, S. Intrinsic tradeoff between kinetic and energetic efficiencies in membrane capacitive deionization. Water Res. 2018, 129, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Couallier, E.M.; Ruiz, B.S.; Lameloise MLDecloux, M. Usefulness of reverse osmosis in the treatment of condensates arising from the concentration of distillery vinasses. Desalination 2006, 196, 306–317. [Google Scholar] [CrossRef]
- Menachem, E.; Williams, A.P. The future of sea water desalination: Energy, technology and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Jungbin, K.; Kiho, P.; Dae Ryook, Y.; Seungkwan, H. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Appl. Energy 2019, 254, 113652. [Google Scholar]
- Global Water Intelligence (GWI) & International Desalination Association (IDA). IDA Desalination Yearbook 2017–2018; Media Analytics Ltd.: Oxford, UK, 2018. [Google Scholar]
- Choules, P. Update on large scale ocean desal plants. In Proceedings of the II Seminario Internacional Desalación, Antofagasta, Chile, 30 November 2010. [Google Scholar]
- Lopez, F.; Araus, M.; Gimenez, R.; Munoz, E.; Romero, G.; Bastida, J.M. Energy consumption optimization in a large seawater desalination plant (Aguilas, 210,000 m3/day). In International Desalination Association World Congress on Desalination and Water Reuse; International Desalination Association: Topsfield, MA, USA, Conference held in San Diego, CA, USA; 2015. [Google Scholar]
- Global Water Intelligence (GWI). Market Insight: Global Water Market in 2018; Global Water Intelligence (GWI): Oxford, UK; Available online: globalwaterintel.com (accessed on 30 June 2018).
- Belatoui, A.; Bouabessalam, H.; Rouane Hacene, O.; De-la-Ossa-Carretero, J.A.; Martinez-Garcia, E.; Sanchez-Liza, J. Environmental effects of brine discharge from two desalination plants in Algeria (South Western Mediterranean. Desalin. Water Treat. 2017, 76, 311–318. [Google Scholar] [CrossRef]
- Honaine Desalination Plant (Algeria). Water World Newsletter. Available online: https://www.waterworld.com/international/desalination/article/16202560/algerian-desalination-plant-reaches-production-milestone (accessed on 2 December 2015).
- Zhao, R.; Porada, S.; Biesheuvel, P.M.; Van der Wal, A. Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis. Desalination 2013, 330, 35–41. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, J.-Q. Technologies for boron removal. Ind. Eng. Chem. Res. 2008, 47, 16–24. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M.; Venturac, F.; Barcelo, D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008, 42, 3601–3610. [Google Scholar] [CrossRef]
- Salveson, A.T.; Requa, P.E.; Whitley, R.D.; Tchobanoglous, G. Potable versus reclaimed: Water quality regulatory issues emerging concerns. In Proceedings of the Annual Conference and Exhibition, Water Environment Federation, Anaheim, CA, USA, 14–18 October 2000. [Google Scholar]
- Sajjad, K.A.A.; Mohd, Y.M.Y.; Abd Aziz, B.M.A.; Hassimi, A.H. Electrodialysis desalination for water and wastewater: A review. Che Eng. 2019, 138, 75–82. [Google Scholar]
- Choi, E.; Yun, Z.; Chung, T.H. Strong nitrogenous and agro-wastewater: Current technological overview and future direction. Water Sci. Technol. 2004, 49, 1–5. [Google Scholar] [CrossRef]
- Fernandez-gonzalez, C.; Ibañez, R.; Irabien, A. Sustainability assessment of electrodialysis powered by photovoltaic solar energy for freshwater production. Renew. Sustain. Energy Rev. 2015, 47, 604–615. [Google Scholar] [CrossRef]
- Wright, N.C.; Winter, A.G. Justification for community-scale photovoltaic-powered electrodialysis desalination systems for inland rural villages in India. Desalination 2014, 352, 82–91. [Google Scholar] [CrossRef]
- Círez, F.; Uche, J.; Bayod, A.A.; Martíinez, A. Batch ED fed by a PV unit: A reliable, flexible, and sustainable integration. Desalin. Water Treat. 2013, 51, 673–685. [Google Scholar] [CrossRef]
- Turek, M. Cost effective electrodialytic seawater desalination. Desalination 2003, 153, 371–376. [Google Scholar] [CrossRef]
- Veronica, A.; Patrice, S.; Bruce, D. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597. [Google Scholar]
- Helmholtz, J. Theory of the double electric layer. J. Frankl. Inst. 1883, 110, 217–227. [Google Scholar]
- Bockris, J.O.; Reddy, A.K.N.; Gamboa-Aldeco, M. Modern Electrochemistry, 2nd ed.; Kluwer Academic/Springer Publishing Company: New York, NY, USA, 2000. [Google Scholar]
- Yan, C.; Kanaththage, Y.W.; Short, R.; Gibson, C.T.; Zou, L. Graphene/Polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination 2014, 344, 274–279. [Google Scholar] [CrossRef]
- Porada, S.; Borchardt, L.; Oschatz, M.; Bryjak, M.; Atchison, J.S.; Keesman, K.J.; Kaskel, S.; Biesheuvel, P.M.; Presser, V. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ. Sci. 2013, 6, 3700. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, T.; Qiao, W.C.; Wang, Z.; Yu, L. Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization. J. Tai. Insti. Che. Eng. 2017, 12, 213–219. [Google Scholar] [CrossRef]
- Hisham, M.; Mohammed, S. Activated Carbon Cloth for Desalination of Brackish Water Using Capacitive Deionization. Desalin. Water Treat. 2018, 45, 17–36. [Google Scholar]
- Ryoo, M.W.; Seo, G. Improvement in capacitive deionization function of activated carbon cloth by titania modification. Water Res. 2003, 37, 1527–1534. [Google Scholar] [CrossRef]
- Hou, C.H. Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization. Sep. Purif. Technol. 2014, 130, 7–14. [Google Scholar] [CrossRef]
- El-Deen, A.G.; Barakat, N.A.M.; Kim, H.Y. Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 2014, 344, 289–298. [Google Scholar] [CrossRef]
- Park, K.K.; Lee, J.B.; Park, P.Y.; Yoon, S.W.; Moon, J.S.; Eum, H.M.; Lee, C.W. Development of a carbon sheet electrode for electrosorption desalination. Desalination 2013, 206, 86–91. [Google Scholar] [CrossRef]
- Sampo, T.; Marja, V.; Suvi, L.; Tiina, V.; Donald, L. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display. Sci. Rep. 2016, 200, 22967. [Google Scholar]
- Hou, C.H.; Huang, J.F.; Lin, H.R.; Wang, B.Y. Preparation of activated carbon sheet electrode assisted electrosorption process. J. Taiwan Inst. Chem. Eng. 2012, 43, 473–479. [Google Scholar] [CrossRef]
- Ajay, K.M.; Dinesh, M.N.; Murthy, K.V.; Ravikumar, C.R.; Nagaswarupa, H.P. Deposition & Electrochemical characterization of Multilayer coated electrode material for super capacitor application. Mater. Today Proc. 2018, 5, 21452–21457. [Google Scholar]
- Soffer, A.; Folman, M. The electrical double layer of high surface porous carbon electrode. J. Electroanal. Chem. Interfacial Electrochem. 1972, 38, 25–43. [Google Scholar] [CrossRef]
- Huang, K.; Chai, S.H.; Mayes, R.T.; Tan, S.; Jones, C.W.; Dai, S. Significantly increasing porosity of mesoporous carbon by NaNH2 activation for enhanced CO2 adsorption. Microporous Mesoporous Mater. 2016, 230, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Teng, H.S.; Hsu, L.Y. High-porosity carbons prepared from bituminous coal with potassium hydroxide activation. Ind. Eng. Chem. Res. 1999, 38, 2947–2953. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Bao, S.; Cruz, R.; Song, S. Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes. Desalination 2014, 340, 67–72. [Google Scholar] [CrossRef]
- Mopoung, S.; Bunterm, T. KMnO4 modified carbon prepared from waste of pineapple leaf fiber production processing for removal of ferric Ion from aqueous solution. Am. J. Appl. Sci. 2015, 13, 814–826. [Google Scholar] [CrossRef]
- Feng, D.; Yuping, L.; Hongbin, C.; Yongbing, X.; Yi, Z. Capacitive deionization by ordered mesoporous carbon: electrosorption isotherm, kinetics and the effect of modification. Desali. Water. Treat. 2014, 52, 1388–1395. [Google Scholar]
- Krishnamoorthy, K.; Navaneethaiyer, U.; Mohan, R.; Lee, J.; Kim, S.J. Graphene oxide nanostructures modified multifunctional cotton fabrics. Appl. Nanosci. 2012, 2, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Liu, Y.; Lu, T.; Sun, Z. Rational design and fabrication of graphene/carbon nanotubes hybrid sponge for high-performance capacitive deionization. J. Mater. Chem. A 2015, 3, 13418–13425. [Google Scholar] [CrossRef]
- Myint, M.T.Z.; Dutta, J. Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination 2012, 305, 24–30. [Google Scholar] [CrossRef]
- Gang, W.; Qiang, D.; Zheng, L.; Chao, P.; Chang, Y.; Jieshan, Q. Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. J. Mater. Chem. 2012, 22, 21819. [Google Scholar]
- Huanlei, W.; Qiuming, G. Synthesis, characterization and energy-related applications of carbide-derived carbons obtained by the chlorination of boron carbide. Carbon 2009, 47, 820–828. [Google Scholar]
- Jian, H.L.; Liu, B.; Lan, Y.Q.; Kuratani, K.; Akita, V.; Shioyama, H.; Zong, F.; Xu, Q. From Metal-Organic Framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.Z.; Hu, Y.S.; Maier, J.; Adelhelm, P.; Smarsly, B.; Antonietti, M. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv. Funct. Mater. 2007, 17, 3083–3087. [Google Scholar] [CrossRef]
- Tsouris, C.; Mayes, R.; Kiggans, J.; Sharma, K.; Yiacoumi, S.; DePaoli, D. Mesoporous carbon for capacitive deionization of saline water. Environ. Sci. Technol. 2011, 45, 10243–10249. [Google Scholar] [CrossRef] [PubMed]
- Arulepp, M.; Leis, J.; Latt, M.; Miller, F.; Rumma, K.; Lust, E.; Burke, A.F. The advanced carbide-derived carbon based supercapacitor. J. Power Sources 2006, 162, 1460–1466. [Google Scholar] [CrossRef]
- Shi, W.; Ye, C.; Xu, X.; Liu, X.; Ding, M.; Liu, W.; Cao, X.; Shen, J.; Yang, H.Y.; Gao, C. High-Performance Membrane Capacitive Deionization Based on Metal−Organic Framework-Derived Hierarchical Carbon Structures. ACS Omega 2018, 3, 8506–8513. [Google Scholar]
- Chen, Y.Z.; Wang, C.; Wu, Z.Y.; Xiong, Y.; Xu, Q.; Yu, S.H.; Jiang, H.L. From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis. Adv. Mater. 2015, 27, 5010. [Google Scholar] [CrossRef]
- Xu, X.; Pan, L.; Liu, T.; Sun, Z. Enhanced capacitive deionization performance of graphene by nitrogen doping. J. Colloid Interface Sci. 2015, 445, 143–150. [Google Scholar] [CrossRef]
- Jeong, H.M.; Lee, J.W.; Shin, W.H.; Choi, Y.J.; Shin, H.J.; Kang, J.K.; Choi, J.W. Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Lett. 2011, 11, 2472. [Google Scholar] [CrossRef] [PubMed]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chenglin, Z.; Yong, L. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720. [Google Scholar] [CrossRef] [PubMed]
- Yong, L.; Xingtao, X.; Ting, L.; Zhuo, S.; Daniel, H.C.; Likun, P. Nitrogen-doped electrospun reduced graphene oxide-carbon nanofiber composite for capacitive deionization. RSC Adv. 2015, 5, 34117–34124. [Google Scholar]
- Jie, M.; Lei, W.; Fei, Y. Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material. Electrochim. Acta 2018, 263, 40–46. [Google Scholar]
- Cao, J.; Wang, Y.; Chen, C.; Yu, F.; Ma, J. A Comparison of graphene hydrogels modified with single-walled/multiwalled carbon nanotubes as electrode materials for capacitive deionization. J. Colloid Interface Sci. 2018, 518, 69–75. [Google Scholar] [CrossRef]
- Ling, L.; Liuhui, L.; Qinghan, M.; Bing, C. High performance graphene composite microsphere electrodes for capacitive deionization. Carbon 2015, 90, 75–84. [Google Scholar]
- Ahmed, E.D.; Jae, H.C.; Cheol, S.K.; Khalil, A.K.; Abdulhakim, A.; Nasser, B. TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination 2015, 361, 53–64. [Google Scholar]
- Yasin, A.S.; Mohamed, H.O.; Mohamed, I.M.; Mousa, H.M.; Barakat, N.A. Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode. Sep. Purif. Technol. 2016, 171, 34–43. [Google Scholar] [CrossRef]
- Yan, C.; Zou, L.; Short, R. Polyaniline-modified activated carbon electrodes for capacitive deionization. Desalination 2014, 333, 101–106. [Google Scholar] [CrossRef]
- Ahmed, E.D.; Remko, B.; Hak, Y.K.; Hongwei, D.; Mary, C.P.; Jae-Hwan, C. Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water via Asymmetric Capacitive Deionization. ACS Appl. Mater. Interfaces 2016, 8, 25313–25325. [Google Scholar]
- Liu, P.; Wang, H.; Yan, T.; Zhang, J.; Shi, L.; Zhang, D. Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization. J. Mater. Chem. A 2016, 4, 5303. [Google Scholar] [CrossRef]
- Lee, B.; Park, N.; Kang, K.S.; Ryu, H.J.; Hong, S.H. Enhanced Capacitive Deionization by Dispersion of CNTs in Activated Carbon Electrode. ACS Sustain. Chem. Eng. 2018, 6, 1572–1579. [Google Scholar] [CrossRef]
- Qinghua, J.; Chengzhi, H.; Huijuan, L.; Jiuhui, Q. Development of nitrogen-doped carbon for selective metal ion capture. Chem. Eng. J. 2018, 350, 608–615. [Google Scholar]
- Fan, C.S.; Liou, S.Y.; Hou, C.H. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode. Chemosphere 2017, 184, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Gabelich, C.J.; Tran, T.D.; Suffet, I.M. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ. Sci. Technol. 2002, 36, 3010–3019. [Google Scholar] [CrossRef] [PubMed]
- Shenxu, B.; Jihua, D.; Yimin, Z. Recovery of V(V) from complex vanadium solution using capacitive deionization (CDI) with resin/carbon composite electrode. Chemosphere 2018, 208, 14–20. [Google Scholar]
- Avraham, E.; Noked, M.; Bouhadana, Y.; Sofer, A.; Aurbach, D. Limitations of charge efficiency in capacitive deionization. Electrochem. Soc. 2009, 156, 157. [Google Scholar] [CrossRef]
- Lado, J.J.; Pérez-Roa, R.E.; Wouters, J.J.; Tejedor-Tejedor, M.I.; Federspill, C.; Anderson, M.A. Continuous cycling of an asymmetric capacitive deionization system: An evaluation of the electrode performance and stability. J. Environ. Chem. Eng. 2015, 3, 2358–2367. [Google Scholar] [CrossRef]
- Liu, J.; Lu, M.; Yang, J.; Cheng, J.; Cai, W. Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis. Electrochim. Acta 2015, 151, 312–318. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, D.; Shi, L.; Yan, T. High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization. J. Mater. Chem. 2012, 22, 6603–6612. [Google Scholar] [CrossRef]
- Peters, P.B.; van Roij, R.; Bazant, M.Z.; Biesheuvel, P.M. Analysis of electrolyte transport through charged nanopores. Phys. Rev. E 2015, 93, 053108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suss, M.E.; Baumann, T.F.; Bourcier, W.L.; Spadaccini, C.M.; Rose, K.A.; Santiago, J.G.; Stadermann, M. Capacitive desalination with flow-through electrodes. Energy Environ. Sci. 2012, 5, 9511–9519. [Google Scholar] [CrossRef]
- Tang, W.; He, D.; Zhang, C.; Waite, T.D. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Res. 2017, 121, 302–310. [Google Scholar] [CrossRef]
- Pan, J.; Zheng, Y.; Ding, J.; Gao, C.; Van der Bruggen, B.; Shen, J. Fluoride removal from water by membrane capacitive deionization with a monovalent anion selective membrane. Ind. Eng. Chem. Res. 2018, 57, 7048–7053. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, J.-H.; Choi, J.-H. Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionisation (MCDI). J. Membr. Sci. 2013, 429, 52–57. [Google Scholar] [CrossRef]
- Ryu, T.; Lee, D.-H.; Ryu, J.C.; Shin, J.; Chung, K.-S.; Kim, Y.H. Lithium recovery system using electrostatic field assistance. Hydrometallurgy 2015, 151, 78–83. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, J.; Kim, S.-R.; Kang, J.; Kim, S.; Kim, C.; Yoon, J. Capacitive deionisation with Ca-alginate coated-carbon electrode for hardness control. Desalination 2016, 392, 46–53. [Google Scholar] [CrossRef]
- Liang, P.; Yuan, L.; Yang, X.; Zhou, S.; Huang, X. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionisation cells for domestic wastewater desalination. Water Res. 2013, 47, 2523–2530. [Google Scholar] [CrossRef]
- Bian, Y.; Yang, X.; Liang, P.; Jiang, Y.; Zhang, C.; Huang, X. Enhanced desalination performance of membrane capacitive deionisation cells by packing the flow chamber with granular activated carbon. Water Res. 2015, 85, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.I.; Park, H.R.; Yeo, J.; Yang, S.; Cho, C.H.; Han, M.H.; Kim, D.K. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy Environ. Sci. 2013, 6, 1471–1475. [Google Scholar] [CrossRef]
- Qin, M.; Deshmukh, A.; Epsztein, R.; Patel, S.; Owoseni, O.; Walker, W.; Elimelech, M. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination 2019, 455, 100–114. [Google Scholar] [CrossRef]
- Park, H.R.; Choi, J.; Yang, S.; Kwak, S.J.; Jeon, S.I.; Han, M.H.; Kim, D.K. Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization. RSC Adv. 2016, 6, 69720–69727. [Google Scholar] [CrossRef]
- Yang, S.; Choi, J.; Yeo, J.; Jeon, S.; Park, H.; Kim, D.K. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration. Environ. Sci. Technol. 2016, 50, 5892–5899104. [Google Scholar] [CrossRef]
- Peng, L.; Xueliang, S.; Yanhong, B.; Helan, Z.; Xufei, Y.; Yong, J.; Panpan, L.; Xia, H. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode. Desalination 2017, 420, 63–69. [Google Scholar]
- Li, H.B.; Pan, L.K.; Lu, T.; Zhan, Y.K.; Nie, C.Y.; Sun, Z. A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. J. Electroanal. Chem. 2011, 653, 40–44. [Google Scholar] [CrossRef]
- Cho, Y.; Yoo, C.Y.; Lee, S.W.; Yoon, H.; Lee, K.S.; Yang, S.; Kim, D.K. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes. Water Res. 2019, 151, 252–259. [Google Scholar] [CrossRef]
- Yang, S.C.; Jeon, S.I.; Kim, H.; Choi, J.; Yeo, J.G.; Park, H.R.; Kim, D.K. Stack Design and Operation for Scaling Up the Capacity of Flow- Electrode Capacitive Deionization Technology. Chem. Eng. 2016, 4, 4174–4180. [Google Scholar] [CrossRef]
- Gendel, Y.; Rommerskirchen, A.; David, O.; Wessling, M. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochem. Commun. 2014, 46, 152–156. [Google Scholar] [CrossRef]
- Hatzell, K.B.; Iwama, E.; Ferris, A.; Daffos, B.; Urita, K.; Tzedakis, T.; Chauvet, F.; Taberna, P.L.; Gogotsi, Y.; Simon, P. Capacitive deionization concept based on suspension electrodes without ion exchange membranes. Electrochem. Commun. 2014, 43, 18–21. [Google Scholar] [CrossRef] [Green Version]
- Hatzell, K.B.; Hatzell, M.C.; Cook, K.M.; Boota, M.; Housel, G.M.; McBride, A.; Kumbur, E.C.; Gogotsi, Y. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization. Environ. Sci. Technol. 2015, 49, 3040–3047. [Google Scholar] [CrossRef] [PubMed]
- Długołecki, P.; Van Der Wal, A. Energy recovery in membrane capacitive deionization. Environ. Sci. Technol. 2013, 47, 4904–4910. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.-I.; Yeo, J.-G.; Yang, S.; Choi, J.; Kim, D.K. Ion storage and energy recovery of a flow-electrode capacitive deionization process. J. Mater. Chem. A 2014, 2, 6378. [Google Scholar] [CrossRef]
- Alexandra, R.; Christian, J.L.; Daniel, M.; Lisa, K.W.; Matthias, W. Energy recovery and process design in continuous flow−electrode capacitive deionization processes. ACS Sustain. Chem. Eng. 2018, 6, 13007–13015. [Google Scholar]
- Ma, J.; Liang, P.; Sun, X.; Zhang, H.; Bian, Y.; Yang, F.; Bai, J.; Gong, Q.; Huang, X. Energy recovery from the flow-electrode capacitive deionization. J. Power Sources 2019, 421, 50–55. [Google Scholar] [CrossRef]
- Lim, H.; Ha, Y.; Jung, H.B.; Jo, P.S.; Yoon, H.; Quyen, D.; Cho, N.; Yoo, C.Y.; Cho, Y. Energy storage and generation through desalination using flow-electrodes capacitive deionization. J. Ind. Eng. Chem. 2016, 81, 317–322. [Google Scholar] [CrossRef]
- Doornbusch, G.J.; Dykstra, J.E.; Biesheuvel, P.M.; Suss, M.E. Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization. J. Mater. Chem. A 2016, 4, 3642. [Google Scholar] [CrossRef]
- Tang, K.; Yiacoumi, S.; Li, Y.; Tsouris, C. Enhanced water desalination by increasing the electroconductivity of carbon powders for high performance flow electrode capacitive deionization. ACS Sustain. Chem. Eng. 2018, 54, 210–220. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, K.; Yang, S.; Choi, J.; Park, H.R.; Kim, D.K. A novel three dimensional desalination system utilizing honeycomb-shaped lattice structures for flow electrode capacitive deionization. Energy Environ. Sci. 2017, 71, 710–719. [Google Scholar] [CrossRef]
- Porada, S.; Weingarth, D.; Hamelers, H.; Bryjak, M.; Presser, V.; Biesheuvel, P.M. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. Mater. Chem. A 2014, 2, 9313–9321. [Google Scholar] [CrossRef] [Green Version]
- Kah, P.L.; Tom, C.A.; Davide, M. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar]
- Anderson, M.A.; Cudero, A.; Palma, J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochem. Acta 2010, 55, 3845–3856. [Google Scholar] [CrossRef]
- Suleimani, Z.; Nair, R. Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman. Appl. Energy 2000, 65, 367–380. [Google Scholar] [CrossRef]
- Flemming, H.C.; Schaule, G. Biofouling of membranes—A microbiological approach. Desalination 1988, 70, 95–119. [Google Scholar] [CrossRef]
- Evoqua Desalination. Available online: https://www.evoqua.com/en/about/newsroom/Pages/evoqua-pub-singapore-desal-demonstration-.plant.aspx (accessed on 15 December 2015).
- Clare, B.; Peter, K.; John, F.T.; David, W. Low cost desalination of brackish ground water by Capacitive Deionization (CDI)—Implications for irrigated agriculture. Desalination 2019, 451, 37–53. [Google Scholar]
- Australian National Centre of Excellence in Desalination (NCEDA). Australian Researchers Report Portable CDI Trial. Available online: https://www.desalination.biz/news/2/Australian-researchers-report-portable-CDI-trial/6401/ (accessed on 23 August 2018).
- Lavern, T.N.; Bo, Z.; Dimuth, N.; Stephen, C.; Mikel, C.D. Proof of concept for light conducting membrane substrate for UV activated photocatalysis as an alternative to chemical cleaning. Membranes 2018, 8, 122. [Google Scholar]
- Armineh, H.; Kajia, W.; Sahar, T.; George, Q.C.; Sandra, E.K. The role of ion exchange membranes in mcdi; Review. Membrane 2017, 7, 54. [Google Scholar]
- Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Electrochem. Soc. 1996, 143, 159–169. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, C.; Liu, X.; Xu, X.; Sun, Z.; Pan, L. Review on carbon-based composite materials for capacitive deionization. RSC Adv. 2015, 5, 15205–15225. [Google Scholar] [CrossRef]
- Di, H.; Chi, E.W.; Wangwang, T.; Peter, K.; David, T.W. Faradaic reactions in water desalination by batch mode capacitive deionization. Environ. Sci. Technol. Lett. 2016, 5, 222–226. [Google Scholar]
- Wang, S.; Tian, Y.; Wang, C.; Hang, C.; Zhang, H.; Huang, Y.; Zheng, Z. One-Step Fabrication of Copper Nanopillar Array-Filled AAO Films by Pulse Electrodeposition for Anisotropic Thermal Conductive Interconnectors. ACS Omega 2019, 4, 6092–6096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman, A.; Ryoto, Y.; Masahiro, N. Aluminium nanopillars reduce thermal conductivity of silicon nanobeams. Nanoscale 2017, 39, 15083. [Google Scholar]
- Kerwick, M.I.; Reddy, S.M.; Chamberlain, A.H.L.; Holt, D.M. Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection. Electrochim. Acta 2005, 50, 5270–5277. [Google Scholar] [CrossRef]
- Choo, K.Y.; Lee, K.S.; Han, M.H.; Kim, D.K. Study on the electrochemical characteristics of porous ceramic spacers in a capacitive deionization cell using slurry electrodes. Electroanal. Chem. 2019, 835, 262–272. [Google Scholar] [CrossRef]
- Patricia, F.; Elvira, P.; Giovanni, D.F.; Fiore, P.N. Electro-conductive membranes for permeation enhancement and fouling mitigation; a short review. Membranes 2017, 7, 39. [Google Scholar]
- Seunyeon, C.; Barsa, C.; Ji, H.H.; Mamadou, S.; Diaollo, J.; Wook, C. Energy-efficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery. J. Membr. Sci. 2017, 541, 580–586. [Google Scholar]
Electrochemical Technology | Innovators | Year |
---|---|---|
Flow-by CDI | Bair and Murphy | 1960 |
Flow-through CDI | Johnson | 1970 |
MCDI | Lee | 2006 |
Desalination battery | Pasta | 2012 |
Flow electrode CDI | Jeon | 2013 |
Hybrid CDI | Lee | 2014 |
Inverted CDI | Gao | 2015 |
Cation intercalation desalination | Smith and Dimello | 2016 |
Country | Plant | Capacity (m3.d−1) | SEC (kWh.m−3) | Reference |
---|---|---|---|---|
Qatar | Ras Abu | 164,000 | 4.5 | [11] |
Oman | Sur | 80,000 | 3.6 | [12] |
Spain | Aguilas Gudalentin | 200,000 | 4.6 | [13] |
Chile | El Coloso | 45,360 | 4.3 | - |
China | Caofeidian | 50,000 | 4.0 | [14] |
USA | Carlsbad | 190,000 | 3.5 | [14] |
Egypt | Marsa | 24,000 | 6.7 | [15] |
Algeria | Benisaf | 200,000 | 4.0 | [16] |
Electrode Material | Water Salinity (ppm NaCl) | Capacity (mg/g) | Operation Voltage (V) | Ref. |
---|---|---|---|---|
NG-CNFs | 1000 | 14.79 | 1.2 | [61] |
Graphene gel | 500 | 49.34 | 2.0 | [62] |
3D Graphene modified with SWCNT | 300 | 48.73 | 2.0 | [63] |
GO/resorcinol formaldehyde microsphere (GORFM) | 800 | 35.52 | 1.8 | [64] |
rGO/TiO2 | 300 | 9.1 | 0.8 | [65] |
ZrO2/GO | 50 | 4.55 | 0.8–1.2 | [66] |
PANI/AC | 250 | 3.15 | 1.2 | [67] |
Flexible Graphene | 300 | 18.43 | 1.4 | [68] |
3D Graphene grafted with amine-sulfonic functional group | 500 | 13.72 | 1.4 | [69] |
GO-CNT/AC | 800 | 21.3 | 0.3–1.5 | [70] |
CDI Geometry | Advantages | Drawbacks |
---|---|---|
Flow-by | -Easy to design with low cost plate dense electrodes -High energy recovery -Low energy consumption | -Moderate water flow rate due to low electrodes interspace -Long times required for desalination due to quite low kinetics |
Flow-through | -High ASAR due to high kinetics promoted by turbulence inside the pores of electrodes -High mSAC of the porous electrodes -High water flow rate due to low fluidic resistance of aerogel electrodes | -Higher CAPEX due to the cost of porous electrodes |
Slurry Electrodes | Feed Solution | ||||||
---|---|---|---|---|---|---|---|
AC (Wt %) | [NaCl] (mM) | Additive (Wt %) | Flow Rate (mL/min) | [NaCl] in Effluent (mM) | Flow Rate (mL/min) | Voltage (V) | Ref. |
0–16 | 60 | - | 0–175 | 60 | 2–13 | 1.2 | [91] |
20 | 11.1 | CB 0.5-1.5 | 4 | - | 11 | 0.6–4.8 | [92] |
5 | 0.1 | - | 1 | - | 1 | 1.2 | [93] |
5 | 2.5 | FCNT 0.25 | 25 | - | 3 | 1.2 | [94] |
10 | 0.011–0.016 | CNT 1.5 | 15 | 9.01 | 15 | - | [95] |
5–35 | 2.5 | - | 25 | 3.5 | 3 | 1.2 | [96] |
5 | - | - | 60 | 17.1–256.4 | 9 | 1.2 | [97] |
5 | 1.7 | - | 1 | 3.42–598.3 | 1 | 1.2 | [102] |
5–23 | 10 | - | 5 | 5 | - | - | [103] |
8.3 | 20 | - | 0.5–1.5 | 20 | 0.5–1.5 | 1–1.91 | [104] |
9.1 | 100 | - | - | 1.2 | [105] | ||
25 | 17.1 | - | - | - | - | 1.2 | [106] |
25 | 2.5 | - | - | 3.5 | - | 1.2 | [107] |
Technology | Advantages | Disadvantages | Major Differences |
---|---|---|---|
CDI | Easy to set up Low resistance Low capital cost | Ion co-adsorption Low charge efficiency Low mSAC Low selectivity Low ASAR Electrodes are fixed in solid state hence limited surface area for pores ion adsorption | Does not involve ion exchange membrane. |
MCDI | High kinetics High charge efficiency High ASAR High mSAC Membrane tunability is possible in case of multi-ion system thus selectivity can be achieved. | High resistance High energy demand Electrodes are fixed in solid state hence limited surface area for pores ion adsorption | It uses ion exchange membrane |
FCDI | Binder free hence ion adsorption is improved. Capacitance is enhanced as uncharged carbon particles are continuously fed into the charging cell Could be membrane free. It allows continuous or infinite ion adsorption Applicable for sea water desalination | Low electron within carbon network. Low charge transfer Low flow rate of feed solution. | It involves different architectural design. Electrode is in liquid and continuous flowing state and not fixed on current collectors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folaranmi, G.; Bechelany, M.; Sistat, P.; Cretin, M.; Zaviska, F. Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization. Membranes 2020, 10, 96. https://doi.org/10.3390/membranes10050096
Folaranmi G, Bechelany M, Sistat P, Cretin M, Zaviska F. Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization. Membranes. 2020; 10(5):96. https://doi.org/10.3390/membranes10050096
Chicago/Turabian StyleFolaranmi, Gbenro, Mikhael Bechelany, Philippe Sistat, Marc Cretin, and Francois Zaviska. 2020. "Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization" Membranes 10, no. 5: 96. https://doi.org/10.3390/membranes10050096
APA StyleFolaranmi, G., Bechelany, M., Sistat, P., Cretin, M., & Zaviska, F. (2020). Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization. Membranes, 10(5), 96. https://doi.org/10.3390/membranes10050096