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Supplementary Figures 

Figure S1. Optical photographs of C3N4 powders and the aqueous solution. 

Figure S2. SEM images of the prepared PSf substrate. 
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Figure S3. AFM image of the prepared PSf substrate. 

Figure S4. Pure water flux of the prepared PSf substrate. 

Figure S5. Optical photographs of the prepared pristine TFC and TFN membranes. 
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Figure S6. N2 adsorption isotherm (G), and pore size distribution (G inset) of the prepared C3N4. 

 
Figure S7. O/N ration of PA layer fabricated with various amounts C3N4 nanosheets. The degree of 
cross-linking was calculated by 

ା
× 100%, where X and Y were calculated from the following 

equations, 3X+4Y = O1s and 3X+2Y=N1s. 
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Figure S8. SEM images of C3N4 deposition on PSf support and surface coverage of the deposited 
particles on supports, as measured by Image J software. 

We supposed that the distribution of C3N4 on PSf substrate after removing the excess aqueous 
solution has a great effect on the next step of interfacial polymerization. As shown in Fig. S8, C3N4 

uniformly distributed on PSf support surface benefitting from their excellent dispersion in water and 
suitable particle size. The surface coverage ratio of the deposited C3N4 on the PSf surface obviously 
increased from 11.24% to 47.97% as the increased concentration of the particles in MPD solution from 
0.04 wt./vol % (C3N4-4) to 0.12 wt./vol % (C3N4-12). Note that with increasing the C3N4 loading up to 
0.12 wt./vol%, most of the nanoparticles were deposited well on PSf surface as a monolayer but some 
overlapped forming agglomeration. The interesting deposition features of the nanosheets indicate 
that an appropriate nanoparticles loading amount is significant. 

Figure S9. Normalized water permeance under long-term operation. 
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Supplimentary Tables 

Table S1. Elementary composition of PA layer with various C3N4 amount. 

RO Membranes C1s [%] O1s [%] N1s [%] 
Pristine TFC 77.6 13.3 9.1 

C3N4-4 76.1 13.8 10.1 
C3N4-8 77.1 13.1 9.8 

C3N4-12 76.7 13.2 10.1 

Table S2. Jw, B and R of TFC and TFN membranes. 

RO Membranes Jw [LMH/bar] B [LMH] R [%] 
Pristine TFC 1.7 ± 0.4 0.5 ± 0.1 98.0 ± 0.4 

C3N4-4 2.8 ± 0.2 0.3 ± 0.1 99.2 ± 0.3 
C3N4-8 3.2 ± 0.2 0.2 ± 0.1 99.5 ± 0.2 

C3N4-12 3.6 ± 0.2 1.2 ± 0.2 97.6 ± 0.4 

Table S3. Comparison of the A, B and R of TFC and TFN membranes reported in references and in 
this work. 

RO Membranes ΔP 
[bar] 

NaCl 
[ppm] 

Jw 
[LMH/bar] 

B 
[LMH] 

R 
[%] Ref. 

PA-TFC 15.5 2000 1.7 ± 0.4 0.5 ± 0.1 98.0 ± 0.4 This work 
C3N4-4 15.5 2000 2.8 ± 0.2 0.3 ± 0.1 99.2 ± 0.3 This work 
C3N4-8 15.5 2000 3.2 ± 0.2 0.2 ± 0.1 99.5 ± 0.2 This work 
C3N4-12 15.5 2000 3.6 ± 0.2 1.2 ± 0.2 97.6 ± 0.4 This work 

Dow-SW30HR 15.5 2000 0.92 ± 0.12 0.03 ± 0.01 99.3 ± 0.1 1 
Dow-BW30 15.5 2000 3.77 ± 0.13 0.53 ± 0.06 96.8 ± 0.3 1 
Sepro-RO1 15.5 2000 4.90 ± 0.11 0.59 99.1 ± 0.1 2 
Sepro-RO4 15.5 2000 0.97 ± 0.02 0.16 98.8 ± 0.1 2 
TFN-ZIF-8 15.5 2000 3.35 ± 0.08 0.22 98.5 ± 0.5 2 
TFC-1-GO 15.5 2000 5.42 ± 0.28 1.32 98.2 ± 0.7 3 
TFC GO 15.5 2000 1.97 0.17 98 4 

0.5 wt.% o-CNT TFC 15.5 2000 3.03 0.31 97.7 5 
ASP-Silica RO 15.5 2000 4.16 2.07 96.4 6 
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