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Abstract: Membrane separation processes tender a capable option for energy-demanding separation
processes. Nanofiltration (NF) and reverse osmosis (RO) membranes are among the most explored,
with a latent use in the chemical industry. In this study, four commercial membranes (NF90, NF270,
BW30, and XLE) were investigated for their applicability based on the key structural performance
characteristics in the recycling of Pd-based catalysts from Heck coupling post-reaction mixture. Pure
water and organic solvent permeabilities, uncharged solute permeability, swelling, and catalyst
rejection studies of the membranes were conducted as well as the morphological characterization
using Fourier transform infrared, field emission gun scanning electron microscopy, and atomic force
microscopy. Characterization results showed trends consistent with the manufactures’ specifications.
Pure water and organic solvent fluxes generally followed the trend NF270 > NF90 > BW30 > XLE,
with the solvent choice playing a major role in the separation process. Pd(PPh3)2Cl2 was well rejected
by almost all membranes in 2-propanol; however, XLE rejects Pd(OAc)2 better at high pressure in
acetonitrile. Our study, therefore, revealed that the separation and reuse of the two catalysts by
NF90 at 10 bar resulted in 97% and 49% product yields with 52% and 10% catalyst retention for
Pd(OAc)2 while Pd(PPh3)2Cl2. gave 87% and 6% yields with 58% and 36% catalyst retention in the
first and second cycles, respectively. Considering, the influence of membrane–solute interactions
in Pd-catalyst rejection, a careful selection of the polymeric membrane and solvent, a satisfactory
separation, and recovery can be achieved.

Keywords: palladium-based catalysts; polymeric membranes; separation; NF/RO membranes

1. Introduction

Separation technology has evolved during the 20th century, driven primarily by advances in the
petroleum industry. Numerous technologies such as distillation, extraction, and adsorption have been
universally used [1]. The use of membranes in nonaqueous media has drawn a lot of attention in recent
years owing to their inferior energy demands and ease of use [2]. A promising field, particularly in
pressure-driven processes, is organic solvent nanofiltration (OSN) [3]. Lab-scale and commercial-scale
applications of OSN membranes have been reported [4,5]. In the advance and application of the
membrane process, characterization of modelling and optimization are essential steps [6,7]. A consistent
and reliable method of measuring the separation performance of membranes is essential and allows
end-users to make an informed selection [8]. Membrane characterization parameters may be described
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as either performance related or morphology related. Performance-related parameters describe
membrane functionality such as flux, rejection, and molecular weight cutoff (MWCO). Morphological
parameters which include physical and chemical parameters describe the structure of the membrane [9].
Important morphological parameters include porosity and roughness of the membrane.

Molecular weight cutoff is described as the molecular weight for which 90% rejection of the
solute is achieved by the membrane [10]. The MWCO concept is based on the observation that
molecules generally get larger as their masses increase. As molecules get larger, sieving effects due to
steric hindrance increase and a larger molecule is rejected by the membrane more than the smaller
molecule. MWCO may also be related to diffusion since larger molecules diffuse more slowly than
smaller molecules [11]. Hilal et al. [12] suggested that MWCO determination depends on experimental
conditions such as the nature of the feed solution and the type of membrane module. They showed
this by using a mixture of polyethyleneglycols (PEG) with different molecular weights. Their results
also showed that some membranes have larger and smaller pores respectively than specified by
the manufacturer.

Porosity has been regarded as another useful parameter to describe separation in membranes.
Porosity is usually expressed as pore size, density, pore size distribution (PSD), or the effective number
of pores in the membrane’s upper active layer [13]. Roy, Sharqawy, and Lienhard [14] have theoretically
probed the effects of log-normal pore size distribution on the rejection of uncharged solutes and NaCl.
They showed that the theoretical log-normal function is not apposite for nanofiltration (NF) membranes
due to the large pore size tail of the distribution dictating rejection and flux. Their results also showed
that elucidation based on uncharged solute data alone cannot give functional quantitative information
about the membrane pore size distributions. However, when used in conjunction with other surface
characterization techniques, they showed good agreement in pore size distribution.

Košutić et al. [15] investigated the porosity of NF and reverse osmosis (RO) membranes by
permeation of uncharged compact organic molecules. To ascertain the influence of the porous structure
of the membrane skin on the retention mechanism of different solutes, the PSDs were determined at
almost 690 kPa. Their results showed a distinction between the PSD of NF and RO membranes. The RO
membranes revealed a wide PSD and bimodal distribution, with maxima at 0.52 and 0.80 nm. The PSD
of NF membranes exhibited maxima at larger pore sizes, the first one between 0.95 and 1.10 nm and
the second maximum around 1.55 nm. This was clear evidence of the existence of larger surface pores.

Interest in the application of membrane technology in homogeneous catalyst separation was
evident in the period from 2000 to 2002. The effective application of coated polymeric ultrafiltration
membrane for the photocatalytic degradation by organic pharmaceuticals [16] and the cationic
phenothiazine dye remediation using optimized polyelectrolyte assisted ultrafiltration [17] was
some of the reported areas of interest. Other studies used solvent-resistant NF (SRNF) membranes.
Of these, the polymer-based membranes suggest persuasive prospects for SRNF with unparalleled
cost-efficiency [18]. Vandezande, Gevers, and Vankelecom [10], however, highlighted the dilemma
of comparing retention data from different studies, as these are application specific. The different
properties of solvents, membranes, filtration mode, and operating conditions affect the results in
membrane separations.

The early applications of OSN technology were involved in the recovery and reuse of the
high-value palladium (Pd) catalyst in Heck, Sonogashira, and Suzuki reactions [19,20]. These processes
recorded major successes in the removal of about 95% of residual Pd and separation of the product
from the catalyst and ionic liquid after Suzuki coupling reactions [21,22]. However, the size of this
catalyst is the same as the product and may result in poor separation. Further, the premium utilization
of Pd is as pharmaceutical chemicals and active pharmaceutical ingredients (APIs) and the daily
permitted oral exposure to Pd in a pharmaceutical ingredient of less than 10 mg of Pd per kilo of API
(<10 ppm) [23]. The premium applications of palladium in synthetic biology as an in vivo catalyst [24],
the pharmaceutical industry, and electrocatalysis [25] have become a subject of interest to most
researchers in recent years. Hence, palladium was dubbed the king of transition-metal catalysts [26].
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In light of this, it was of interest to investigate the separation characteristics of common polymeric
membranes in the recovery of palladium (Pd) catalysts in aqueous and organic media with an attempt
to separate and reuse the catalysts from Heck coupling post-reaction mixture. The membranes were
characterized for pure water permeability, pure solvent permeability, surface morphology, chemical
structure, and uncharged solute rejection measurements. The separation performance of different
membranes in different solvents was studied. This work will serve as an archetype for evaluating
NF/RO membranes’ performance in the recovery and reuse of palladium (Pd) catalysts. The data
will help identify the suitable combination of membranes and solvents for use in order to achieve
effective palladium (Pd) catalyst separation and recycling. It will also shed some light on the key
performance-related or morphology-related parameters responsible for effective catalyst separation
and recycle.

2. Experimental

2.1. Instrumentation

The determination of sugar and alcohol concentrations was achieved by the use of Lambda
25 UV-VIS spectrometer (Perkin-Elmer, Waltham, MA, USA) and Clarus 500 Gas Chromatograph
(Perkin-Elmer, Bridgeport Avenue, Shelton, USA), respectively. Membrane characterisation was done
on the following instruments: Field Emission Gun Scanning Electron Microscopy (FEG-SEM) (Carl
Zeiss SMT GmbH, Peabody, MA, USA), Atomic force microscopy (AFM) (Park Scientific Instruments,
Janderstrasse, Mannheim, Germany), and Spectrum 400 Fourier-transform infrared Spectrophotometer
(FTIR) fitted with a universal attenuated total reflection (ATR) sampler (Perkin-Elmer, Waltham,
MA, USA)

2.2. Chemicals Reagents

Five solvents were chosen for the study. These are acetonitrile, methanol, ethanol, and 2-propanol,
all analytical reagent grade, and water. These solvents are commonly used in organic synthesis and
were chosen because of their solvating properties. The solvents also represent the two classes of solvents,
those which coordinate via oxygen and those coordinating via selective donor atoms such as nitrogen,
known as oxic and anoxic solvents, respectively. Water and 2-propanol were used for membrane
characterization. Acetonitrile and 2-propanol were used in catalyst separation studies. The physical
properties of the respective solvents are given in Table S1 of the Supporting Information [27].

Uncharged solutes, glucose and sucrose, were also selected for the determination of molecular
weight cutoff of the membranes. These solutes were supplied by Merck. Two transition-metal catalysts
were used in the study, namely palladium (II) acetate complex of molecular weight 224 g mol−1

and bis(triphenylphosphine)palladium (II) chloride complex (Sigma-Aldrich) of molecular weight
701.91 g mol−1 (Figure 1).
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Figure 1. Structures of the catalysts used.
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2.3. Membranes

Four commercially available NF/RO membranes were used for this study (NF90, NF270,
BW30, and XLE). These were thin-film composite membranes of various characteristics supplied by
Dow/FilmTec (Minneapolis, MN, USA) (Table S2 of the Supporting Information).

2.4. Analytical Procedure

A bench-scale stainless steel dead-end module with a capacity of 1.2 litres was operated at
pressures of 25 bar with nitrogen gas was used (Figure 2).
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Figure 2. Dead-end filtration unit used for retention measurements [28].

The unit was fitted with a Teflon-coated magnetic stirrer supported on the upper lid by a steel
rod. Stirring was required to homogenize the sample and to minimize concentration polarization [28].
Disc samples of the different membranes with a diameter of 9 cm and an effective area of 0.0064 m2

were cut and placed on a porous support disc. The holdup volume underneath the porous support
disc was ~1 mL. The permeate was collected from a Teflon tube into a measuring cylinder. Filtration
measurements were performed by loading feed solutions with a volume ranging from 250–600 mL
at 24 ◦C. The first 20 mL of permeate collected was discarded. Thereafter, 10 mL of permeate was
collected at a specified time. The flux was obtained by Equation (1):

J =
V

A·t
(1)

where V is the volume of permeate, A is the membrane area, and t is the time.

2.5. Membrane Swelling Experiment

The interaction of the solvents with the membrane physical structure was further investigated
by measuring the swelling tendency of the membranes. Membranes were cut and dried at room
temperature in an open dish. Each dried membrane was weighed and immersed in the selected
solvents. After an equilibrium time of approximately 30 minutes, the membrane was removed from
the solvent and quickly dried with a soft tissue to remove the solvent from the external surface before
weighing. Swelling of the membrane was calculated by Equation (2) [29]:

Q =
1
ρs

Wwet −Wdry

Wdry
(2)
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In the equation, Q is the swelling, Wwet is the mass of wet membrane, Wdry is the mass of dry
membrane, and ρs is the density of the solvent.

2.6. Membrane Characterization

Feed solutions of uncharged solutes were prepared with concentrations of 0.1 vol % for the alcohol
and 0.1 wt% for the sugars. The concentrations of the feed and permeate (sugars and alcohols) were
estimated by the Anthrone method [30] and gas chromatography, respectively. Characterization of the
surface morphology and chemical structure of the polymer gave information on the specific chemistry
and orientation of the structure of the functional groups present in the membrane active layer [31].

2.7. Catalyst Rejection

Dissolution of catalysts was done in various solvents (Table 1) and then filtered at 10 and 20 bar.
The concentration and rejection coefficient of the catalyst in the permeate and feed solutions were
determined by UV-VIS spectroscopy and Equation (3), respectively:

R =

(
1−

Cpermeate

Cfeed

)
100 (3)

where Cpermeate and Cfeed are concentrations of the catalyst in the permeate and feed, respectively.

Table 1. Pure water permeability of the membranes.

Membrane Aw (`·m−2·h−1·bar−1)

NF90 3.8
NF270 8.9
BW30 2.1
XLE 2.4

2.8. Catalyst Separation and Reuse

The rejection of the catalysts in a Heck coupling reaction mixture was investigated based on the
hypothesis that sufficient catalyst rejection will enable separation of the catalyst from the mixture,
however, keeping in mind that the catalyst rejection behaviour in a multicomponent solution will be
expected to be different from that of the single- and binary-component solutions. The coupling reaction
was performed as described by Nair et al. [32] with slight modification and was allowed to proceed
for 4 to 6 h. At this point, the reaction was stopped, cooled to room temperature, and immediately
charged into the dead-end unit for filtration (Figure 3).
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A feed sample was taken for UV-VIS analysis before filtration, after which filtration was performed
at 10 bar until ~70% of the volume had permeated. The retentate was also sampled for UV-VIS analysis,
and catalyst rejection by the membranes was calculated according to Equation (3). This concentrated
retentate solution was then transferred back to the reaction flask. Fresh reactants and solvent were
topped up for a second reaction run. The filtration protocol and reaction run were repeated for several
cycles until no further change in conversions could be observed. This procedure was repeated two
times per membrane to get an overall concept of the efficiency of catalyst separation.

2.9. Data Analysis

Data analysis was performed using OriginPro 2015 Sr 1 b9.2.257, and comparisons between
different membranes were carried out using a one-way analysis of variance (ANOVA). Data were
expressed as mean ± SD of triplicate determinations. Significant was considered at p < 0.05.

3. Results

3.1. Pure Water Permeability

Measuring the membrane’s dependence on pressure, it is possible to characterize the porosity of the
membrane’s active layer [33]. Pure water permeability was investigated by using the Kedem–Katchalsky
model for irreversible thermodynamics [34]. According to the model, the relationship between pure
water flux and pressure is expressed in Equation (4).

Jw = Aw(∆P− σ·∆π) (4)

where Jw is the water flux, Aw is the membrane permeability, ∆P is the pressure difference, σ is the
reflection coefficient, and ∆π is the osmotic pressure difference. In the case where only pure water is
present, the osmotic pressure difference becomes zero; therefore, Equation (4) is reduced to Equation (5):

Jw = Aw·∆P (5)

The results show a linear relationship between water flux and applied pressure (Figure 4).
The water flux through all the membranes shows an increase with increasing pressure. Values of
Aw, obtained from the slope of the model, show that NF270 has the largest pure water permeability
followed by NF90, XLE, and BW30. It was noted that the pure water permeability value of NF270 is
twice that of NF90 and more than four times that of XLE and BW30 (Table 1).
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Consequently, it is expected that the pore size distribution would follow the same trend. From
Equation (3), the effective membrane pore radius will increase proportionally with pure water
permeability. This is in line with the literature; NF90 and NF270 are classified as “tight” and “loose”
membranes, respectively [35]. The results show that BW30 and XLE are similar in terms of pore sizes;
however, Nghiem and Coleman [36] proposed the absence of pores in BW30. Presumptuously, XLE
has the same nonporous structure as BW30, which is also in line with the low-pressure RO membrane
(LPRO) supplier’s classification [37]. NF90 has a pure water permeability which lies between that of
the NF270 and the RO membranes. Therefore, it is expected that NF90 will behave in a similar way to
the RO membranes. Besides, the pure water permeability results agree to some extent (Table S2 of the
Supporting Information).

Permeate flow results at supplier’s standard test conditions show that NF90 and XLE have the
lowest permeate flow followed by BW30 and NF270. However, when considering the maximum flow
through these membranes, NF90 has the lowest maximum flow followed by BW30, XLE, and NF270.
This conflicting observation points to changes in pore structure with increasing flow through each
membrane; by implication, there is a similarity in the properties of NF90 and RO membranes (BW30
and XLE). NF270 has the largest pore size with the highest flow and pure water permeability values.

3.2. Organic Solvent Permeability

The Hagen–Poisseuille equation in Equation (6) explains the relationship between flux, pressure,
and viscosity, where an increase in pressure results in a corresponding increase in flux. Hence, solvent
flux for viscous flow is described by Equation (6) [38].

Js =

(
ε·r2

8·∆x·r

)(
∆P
η

)
(6)

where JS is the solvent flux, ε is the porosity, r is the average pore radius, ∆P is the pressure difference,
η is the viscosity, ∆x is the effective membrane thickness, and τ is the tortuosity factor. Figure 5a,b
shows the plots of solvent flux vs. pressure for 2-propanol and acetonitrile, respectively.Membranes 2020, 10, x FOR PEER REVIEW 8 of 23 
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There was a good correlation with Equation (5); all solvents showed steady constant fluxes which
increased with increasing pressure. Also, each solvent exposed to NF270 generally yielded higher
fluxes than NF90, BW30, and XLE, with a trend almost similar to the observation in pure water
permeability measurements. On the contrary, BW30 with the lowest pure water permeability coefficient
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gave higher fluxes compared to XLE. This phenomenon indicates the variation in membrane behaviour
in the presence of a different solvent. Therefore, the resultant rejection behaviour of the membranes
will similarly be perturbed.

The same phenomenon was observed with acetonitrile; strangely with NF90, the trend of the
initial solvent fluxes appeared to be similar to what was observed in the flux of 2-propanol. However,
as the pressure increases, sudden changes in pore structure become evident in NF90. The solvent fluxes
suddenly increase to become the highest of all the membranes; an indication of NF90 pore structure
alteration due to the interaction with acetonitrile molecules. The size of the solvent molecule has an
effect on the morphology of the polymer at a molecular level [39], causing the polymer chains to either
relax or contract as the solvent molecules penetrate the matrix.

Equation (5) highlights the influence of viscous flow on solvent transport in nanofiltration
membranes, which is evident from the plot of solvent flux against viscosity (Figure 6).
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The results showed an increase in solvent flux with decreasing viscosity of solvents; hence, a solvent
with low viscosity will flow through the membrane with more ease than a solvent with high viscosity.
The resistance to flow will, therefore, lead to lower fluxes in the membranes, which collaborates the
Hagen–Poisseuille model.

The effect of ease of flow is in line with the resistance-in-series model developed by Machado,
Hasson, and Semiat [40] and described by Equation (7). The model describes the permeation of the
solvent through composite polymeric membranes. It has been reported that permeation through the
membrane pores will only occur when the applied pressure overcomes the surface energy difference [38].

J =
∆P

φI[∆γ+ f1·µ] + f2·µ
(7)

where f 1 and f 2 are constants characterizing the individual mass transfer coefficients and pore radii,
φ is the solvent parameter, and ∆γ is the surface energy difference between the membrane and solvent.

Yang, Livingston, and Freitas Dos Santos [41] have highlighted the difficulty of relating viscosity
and surface tension of solvents to their flux. In their work, they included water as a solvent and
showed that water has a higher viscosity and surface tension than methanol but higher flux in all the
membranes tested. They concluded that the difference in the solvent fluxes through the membranes
cannot be explained solely by differences in viscosity and surface tension. Interactions between the
membrane and solvent, dependent on the membrane material and properties, also have to be taken
into account. In the current study, our results show some correlation between the viscosity and flux of
the selected solvent and therefore agree with the observation of Yang et al.
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3.3. Membrane Swelling Experiment

Solvent causes swelling of the polymeric material caused by solvent contact, leading to a negative
effect on the separation efficacy and lifetime of the polymeric membrane material [42]. The three
solvents used in coupling reactions and catalyst retention studies and the resultant effect are presented
in Table 2.

Table 2. Results of swelling measurements.

Solvent
Swelling
(cm−3 g)

NF90 NF270 BW30 XLE

Water 0.23 0.41 0.38 0.31
Acetonitrile 0.43 0.60 0.58 0.51
2-Propanol 0.50 0.72 0.68 0.63

Tarleton et al. [43] observed that the degree of the swelling has a significant effect on flux than the
viscosity of the mixture. Further, Silva, Han, and Livingston [5] ruled out swelling as a justification
for higher flux in ethylacetate compared to toluene when in contact with STARMEM 122 and MPF50
membranes. Hence, the solvent may lead to pore-structure changes such as swelling of the polymer
matrix. In our study, the swelling behaviour of the membranes in acetonitrile, 2-propanol, and water
was investigated.

The results show that all the membranes swell more in the organic solvent than in water. Swelling
is more pronounced in 2-propanol, followed by acetonitrile and lastly water. The results are in
agreement with the observations of Zhao and Yuan [44].

It was important to rationalize our observations of higher swelling in organic solvents compared
to water. To begin with, the relationship between swelling and molecular weight of the solvent was
investigated (Figure 7a). The results show that, for the selected solvents, membrane swelling increases
linearly with increasing molecular weight. The results show that swelling is more pronounced in
2-propanol (highest molecular weight). It can be seen that NF270 showed higher swelling in all
the solvents followed by BW30, XLE, and NF90, in that order. In light of the observations above,
the influence of swelling on solvent flux was investigated and it reveals that the flux declines with an
increasing swelling degree (Figure 7b). NF270 shows the steepest flux decline. A strange observation
from the results is that of NF90. The membrane also shows a rather steep flux decline despite low
swelling degree when compared to NF270, BW30, and XLE. A steady flux decline with increasing
swelling was observed for BW30 and XLE. This observation may be due to the close solubility parameter
of the solvent with the NF90 causing chain shrink [45].

It is clear from the results that swelling has a negative effect on the flux behaviour of the membranes,
which is attributed to changes in the polymer matrix, as documented by other authors [5,46,47].
Freger et al. [48] explained that swelling leads to disruption of cross-linking and formation of
new hydrophobic and hydrophilic functional groups in the membrane structure. This change in
cross-linking is common in NF membranes [39,49]. The cross-linking chains expand during swelling,
therefore, increasing the size of the pores. This results in a decrease in the flux of components through
the membrane.

The opposite has also been cited as a possible mechanism of swelling in NF membranes [50].
In this process, the polymer chains shrink, therefore, increasing the size of the pores. This leads to an
increase in solvent fluxes and a reduction in the rejection of solutes of interest. Our results agree with
the former process, pointing to decreased pore sizes with swelling.
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Miller-Chou and Koenig [39] have based the differences in dissolution behaviour to mass and
momentum transport on the swelling polymer matrix. They concluded that the nature of the polymer
and the differences in rigidity are the main parameters that determine polymer swelling behaviour.
For the membranes studied, it is clear that there are similarities in structure and dissolution behaviour
as well as how the selected solvent impacts the membranes. These membrane-solvent interactions
however do not alter the membrane structures drastically. For catalyst separation to be effective,
the membrane-solvent interactions should not be detrimental. It was therefore concluded that the
solvents selected are fit for later use in catalyst retention and separation studies.

3.4. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM)

The SEM micrograph of the surface showed the texture and appearance of the membranes
(Figure 8), with a homogeneous surface covering. NF90, BW30, and XLE showed a similar type of
appearance and texture, while NF270 showed some exceptions with a fairly smooth surface and texture.
NF90 and XLE are the most identical membranes in terms of surface roughness. However, BW30 also
showed some degree of roughness surface but with smaller “hills” and “valleys” compared to NF90
and XLE. From the micrograph, one can conclude that “tight” NF membranes are generally rougher
compared to “loose” NF membranes.

The images of the microstructure of the membranes show that they consist of three characteristic
layers (Figure S1 of the Supporting Information). These are labelled as (i) top barrier layer, (ii) porous
polysulfone layer, and (iii) non-woven polyester support layer [51]. Each layer has a definite function.
The top layer serves as a separation barrier, separating components based on the MWCO [52].
The polysulfone layer acts as a support layer designed to withstand high pressures during filtration.
The non-woven support adds structural support to the whole composite membrane. This layer is
tailored to generate a hard, smooth, and compact surface [53].

The rough surface of the NF90 membrane was further characterized by AFM (Figure S2 of the
Supporting Information), and the observations are in agreement with the SEM result (Table 3).
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Table 3. Atomic force microscopy (AFM) roughness measurements.

Membrane Roughness (nm)

NF90 124.99
NF270 11.40
BW30 95.52
XLE 135.60
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Long Duc Nghiem, Coleman, and Espendiller [54] studied the surfaces of NF90 and NF270 and
noted the difference in surface roughness between the two membranes. NF90 had a mean roughness
of 69.9 nm, while NF270 had a roughness of 5.5 nm. The texture of the membranes may influence
fouling tendency. Membranes with a rougher texture are more prone to colloidal fouling than smooth
membranes. Yang and Craig [55] explained that preferential clogging of the “valleys” on the surface of
the membrane occurs, resulting in flux decline.

3.5. Uncharged Solute Permeability

Uncharged solutes were used to determine the molecular weight cutoff of the membranes.
Bellona et al. [11] have highlighted that this definition may be vague and can vary between 60 and 90%
depending on the manufacturer’s protocols. The concept of MWCO is based on the observation that,
as molecules get larger, separation by sieving due to steric hindrance increases. For uncharged solutes,
the convective flow of the solute through the membrane is not influenced by electrostatic interactions.
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Therefore, a larger molecule will be rejected more than a smaller molecule. Diffusion may also play a
role in the MWCO, since a larger molecule may diffuse more slowly than the smaller molecule.

In the current study, three solutes were used to determine the MWCO, propanol (MW = 60 g mol−1);
glucose (MW = 180 g mol−1), and sucrose (MW = 342 g mol−1) (Table S3 of the Supporting Information).
The trend in terms of the MWCO is NF270 > NF90 > BW30 > XLE and highlights the influence of
membrane–solute interactions. It can be seen from the results that the larger solute is rejected more
than the smaller one. According to the steric hindrance pore model, the larger solute will experience
more frictional resistance during diffusive and convective transport through the membrane more than
the smaller solute.

3.6. FTIR Structural Determination

The chemical structure of the membrane was probed to understand the behaviour of the
membranes. According to the patent by Cadotte, Dow FilmTec membranes are prepared by interfacial
polymerization [56]. This polymerization process is based on the combination of 1,3-phenylene
diamine and triacid chloride of benzene. The resulting membrane is usually referred to as fully
aromatic [54]. In the case where piperazine is used, instead of 1,3-phenylene diamine, the resulting
membrane is referred to as semi-aromatic [57]. The FTIR result showed that NF90, BW30, and XLE fit
the characteristics of fully aromatic polyamides while NF270 is a semi-aromatic polyamide (Table S4 of
the Supporting Information).

The fully aromatic membranes show a common band at ~1663 cm−1. This band can be assigned
to C=O stretching. The band is referred to as amide band I for aromatic polyamides. The membranes
also share common bands at ~1543 cm−1. This band is assigned to in-plane N–H bending and C–N
stretching. The band is also known as amide band II and is characteristic of aromatic polyamides [58].
It can be seen from the results that amide bands I and II are missing from the spectrum of NF270.
This is an indication of a semi-aromatic structure. All the membranes however do share common
bands. These are observed in polyamides in general. The band at 1585 cm−1 can be assigned to the
C=C bond stretching in aromatic rings. The strong band at ~1238 cm−1 present in all the membranes
spectra can be assigned to C–O stretching. This band points to the presence of carboxylic acid. It has
been mentioned that the presence of these carboxylic acids leads to a chemically resistant and robust
polymer. The FTIR results show that NF90, BW30, and XLE are similar in terms of chemical structure.
NF270 is somewhat different due to the aliphatic influence in its chemical structure.

Overall, the results confirm the presence of different functional groups in the polymeric membranes.
The presence of functional groups in the active layer determines the physicochemical properties of
the membrane. McGilvery et al. [59] have stated that the type and concentration of functional groups
present in the membrane active layer affect membrane–solute and membrane–solvent interactions.
In turn, membrane performance such as permeability and rejection is influenced. In the membranes
studied, it is clear that differences in chemical structure have an impact on membrane performance.
In light of this, a preliminary investigation into the rejection of two catalysts by the membranes
was performed.

3.7. Catalyst Rejection

Catalyst rejection measurements in acetonitrile and 2-propanol were performed; the two solvents
have different properties (Table S1 of the Supplementary information). Therefore, it can be expected
that their dielectric constant and molecular size will be different. In light of these characteristics, it was
of interest to compare catalyst retention in the said solvents.

3.7.1. Rejection in Acetonitrile

Retention results in acetonitrile at 10 and 20 bar (Figure 9) showed very low retention of Pd(OAc)2

in all the membranes irrespective of the pressure. At 10 bar, NF90 showed the highest retention of
40 ± 1.5%. XLE showed the second-highest retention of 36 ± 1.3%. BW30 showed a mere 13 ± 1.0%
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retention, while NF270 was the least with less than 10 ± 0.5% of the catalyst retained. The membranes
showed similar retention of Pd(PPh3)2Cl2 in acetonitrile. NF90 once again showed the highest retention
of 48 ± 1.6%. XLE showed retention of 38 ± 1.4%. BW30 showed improved retention of 30 ± 1.5%.
NF270 also showed increased retention of 12 ± 1.0%. The increase in retention is however still
insignificant with much of the catalyst still permeating through the membranes. The trend with respect
to the rejection of Pd(PPh3)2Cl2 is NF90 > XLE > BW30 > NF270.
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that in XLE. The latter showed retention of 15 ± 1.5%. There is almost a 33% difference in the retention 
between the two membranes. In acetonitrile, the rejection of Pd (PPh3)2Cl2 is lower than Pd (OAc)2 in 
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The retention measurements at 20 bar show lower retention of the catalysts compared to
measurements at 10 bar. In this instance, XLE showed the highest Pd(OAc)2 retention of 38 ± 2.0%.
NF90 showed retention of 28 ± 1.4%. This observation points towards a 30% decrease in the retention
when compared to measurements at 10 bar. BW30 and NF270 showed similar retention, less than 10%.
The retention in BW30 also showed a 45 ± 0.3% decrease when compared to measurements at 10 bar.
The trend relating to Pd(OAc)2 retention at 20 bar is XLE > NF90 > BW30, NF270.

The retention of Pd(PPh3)2Cl2 in acetonitrile at 20 bar was also lower in all the membranes when
compared to 10 bar measurements. NF90 showed the highest retention of 32 ± 1.4%. A strange
observation was that of BW30. The membrane showed retention of 24 ± 1.5% which is higher than that
in XLE. The latter showed retention of 15 ± 1.5%. There is almost a 33% difference in the retention
between the two membranes. In acetonitrile, the rejection of Pd (PPh3)2Cl2 is lower than Pd (OAc)2 in
XLE membranes; this may be due to increased membrane fouling and concentration polarization at
20 bar compared to 10 bar. The results, therefore, indicate that membrane characteristics and pressure
do significantly influence retention in acetonitrile.

3.7.2. Rejection in 2-Propanol

Retention results in 2-propanol at 10 and 20 bar (Figure 10) showed slightly higher retentions
compared to those in acetonitrile. At 10 bar, NF90 showed the highest Pd(OAc)2 retention of 74 ± 1.8%.
XLE showed retention of 44 ± 1.5%. NF270 and BW30 showed poor retention of 9 ± 0.5% and 4 ± 0.3%,
respectively. The Pd(OAc)2 rejection trend at this point is NF90 > XLE > NF270 > BW30. The most
obvious observation from the results is the retention of Pd(PPh3)2Cl2. It can be seen that the catalyst
was well retained by all membranes. NF90, BW30, and XLE showed retentions of >99%. NF270 showed
retention of 86%, which is still fairly high when compared to retention measurements in acetonitrile.
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The results at 20 bar show a decrease in catalyst retention. XLE showed the highest retention
with 38 ± 1.5% of Pd(OAc)2 retained. NF90 showed retention of 33 ± 1.4%. This is an indication of a
55% reduction in retention compared to 10 bar measurements. NF270 and BW30 showed very poor
retention of 8 ± 1.5% and 6 ± 1.3%, respectively. The rejection trend at this point is XLE > NF90 > NF270
> BW30. The retention of Pd(PPh3)2Cl2 at 20 bar did not change much. Most of the membranes showed
very good retention of the catalyst. NF90, BW30, and XLE showed retentions up to >99%. NF270
showed retention of 78 ± 1.8%. The results, therefore, indicate that pressure does not significantly
influence retention in 2-propanol.

3.7.3. Rejection in Water

Retention measurements were performed in water to determine the separation of the catalysts (Pd
(OAc)2 and PdCl2) from aqueous media. However, the low solubility of Pd (OAc)2 in water should be
kept in mind. PdCl2 was dissolved in a small amount of HCl before dilution with distilled water to
achieve the total dissolution of the complex.

The results show good retention of Pd (OAc)2 in all membranes. NF90 showed the highest
retention of 84 ± 1.3%; however, BW30 showed comparable retention of 81 ± 1.5%. XLE and NF270
showed reasonable retention of 66% and 50%, respectively. The trend observed for Pd (OAc)2 retention
in water is different from that observed in retention measurements where organic solvents were used.
In the former, the trend is NF90 > BW30 > XLE > NF270 (Figure 11a).

All membranes showed very good retention for PdCl2 with NF90, BW30, and XLE showing
retentions of up to >99%. NF270 also showed notable retention of 92 ± 0.8%. These retention results
are similar to those of Pd (PPh3)2Cl2 in 2-propanol.

The results may be strange; however, a small MW of PdCl2 plays a vital role compared to the
smaller MW of Pd(OAc)2. It was expected that PdCl2 would be more poorly retained than Pd(OAc)2,
but this was not the case. The results, therefore, highlight that other transport mechanisms have to be
taken into consideration when addressing retention data.

The results show that 70 ± 1.7% of Pd(OAc)2 was retained in NF90. XLE showed an increase in
retention compared to measurements at 10 bar, with 69 ± 0.5% retention achieved. BW30 showed
a 31 ± 0.5% reduction in the retention compared to 10 bar measurements. The membrane showed
retention of 56 ± 2.1%. NF270 realized a slight increase in retention with 53 ± 1.5% retention.
The rejection trend at this point is NF90 > XLE > BW30 > NF270. Overall, the membranes showed the
highest catalyst retention in water compared to retention in organic solvents (Figure 11b).
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The catalyst retention results in acetonitrile, 2-propanol, and water show the influence of
solvent–solute interactions. Solvents differ in the way they interact with solutes. The concept of
solvation is of importance in addressing solvent–solute interactions. Solvation has been defined as the
phenomenon in which each dissolved molecule or ion is surrounded by a shell of solvent molecules [60].

Reichardt and Welton [61] have explained that solvation increases with increasing polarity of the
solvent. Our results show that catalyst retention generally increases with increasing polarity of solvent
(Table S1 of the Supporting Information). It can be assumed then that better solvation of the solute
leads to increased retention. This is in line with observations by Jeroen Geens et al. [62]. They observed
higher retentions in methanol than in ethanol. They based their results on the solvation properties of
the two solvents.

Membrane–solute interactions are also of importance; the overall retention results indicates that
the solute size and steric hindrance effects are critical factors. A large-size catalyst was rejected more,
on average, irrespective of the solvent as a result of membrane–solute interactions in which parameters
such as surface resistance and mass transfer resistance have influence.

3.8. Catalyst Separation and Reuse

The concept of catalyst separation was investigated in the Heck coupling post-reaction mixture.
The separation of two catalysts (Pd(OAc)2 and Pd(PPh3)2Cl2) by NF90 at 10 bar was studied.
The reaction results of Pd(OAc)2 from reaction mixture run 18, and Pd(PPh3)2Cl2 from run 26
are listed in Table 4.

The coupling reaction–recycle procedure was run for two cycles for each catalyst and the retention
results of Pd (OAc)2 (Figure 12). The reaction of run 26 performed with Pd (PPh3)2Cl2 reached
reasonable conversions after 4 h, with 87% yields obtained. The first filtration cycle resulted in a 58%
retention of the catalyst (Figure 12).

The retentate from this cycle was used to initiate the reaction of run 26b with fresh reactants and
solvent. This reaction was plagued by palladium black formation.

An insignificant reaction yield of 6% was realized after 8 h. For totality, the second filtration cycle
was performed. This cycle yielded 36% catalyst retention. It is not clear whether the precipitated
palladium black had influenced catalyst retention. The retentate from this cycle contained a deactivated
catalyst. This was evident in the reaction of run 26c, which did not show any conversion after 8 h.
It was decided that the catalyst had lost activity.
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Table 4. Heck catalyst reaction–recycle procedure.
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26c Pd(PPh3)2Cl2 Et3N PPh3 Acetonitrile No reaction
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These results highlight that catalyst decomposition has to be taken into account to address losses
during nanofiltration of transition-metal catalysts. It has been shown that catalysts are reduced from
Pd(II) to Pd(0) during the Heck reaction [63,64]. This Pd (0) complex is prone to deactivation into
palladium black entities [65,66]. The exact mechanism of deactivation is beyond the scope of this study.
It should be kept in mind that our system was not isolated, and therefore, deactivation due to oxidation
was imminent.

The results however show that catalyst recycling is possible. This procedure appears to be a
trade-off between reduced reaction rates and catalyst loss. Our system did not show the robustness,
and only two nanofiltration cycles were possible. This is somewhat unreasonable when compared to
other author’s reports of up to ten filtration cycles [67,68]. Our observations show that many factors
have to be taken into account when considering such a catalyst-recycling process.

4. Discussion

There is a decrease in retention with increasing pressure in all the membranes (Figures 9 and 10),
which is in contrast to the observations by Scarpello et al. [69] that observed increased retentions
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with increasing pressure; however, their study involved the use of solvent-resistant polyimide and
polysiloxane membranes. Hence, the chemical properties will differ from the polyamide membranes
used in our study. Consequently, membrane performances such as flux and rejection will also differ.

The catalyst retention results in acetonitrile and 2-propanol show the influence of solvent–solute
interactions. The concept of solvation is of importance in addressing solvent–solute interactions [60].
Reichardt and Welton [61] have explained that solvation increases with increasing polarity of the
solvent. Our investigation of acetonitrile and 2-propanol showed that better catalyst retention was
observed in the latter, contradicting the influence of solvents. It was expected that better solvation of
the solute should lead to increased retention, as reported by Jeroen Geens et al. [62]. They observed
higher retentions in methanol than in ethanol. They based their results on the solvation properties of
the two solvents. This solute–solvent behaviour shows that there are other interactions involved in
membrane separation.

Membrane–solute interactions are also of importance. Looking at the overall retention results, it
can be seen that solute size and steric hindrance effects come into play. The larger catalyst was rejected
better on average irrespective of the solvent. This observation points towards membrane–solute
interactions in which parameters such as surface resistance and mass transfer resistance have influence.
The larger catalyst will experience more of these effects than the smaller catalysts. Separation is
achieved by size exclusion. Membrane–solvent interactions have also shown an effect. NF90 showed an
increase in pore sizes and therefore higher fluxes in acetonitrile. This was different from the behaviour
in 2-propanol. All the interactions discussed above highlight the complexity of membrane separation
in organic media.

5. Conclusions

The main goal of applying membrane process in the potential separation and recovery of
palladium-based catalyst systems from reaction mixtures was achieved through a series of structured
activities which include a review of literature, characterization of the membrane, catalyst retention,
and recycling. Good membrane stability was achieved in the selected organic solvents. Also,
the catalyst retention revealed a good degree of membrane–solute interaction (steric hindrance and
size exclusion). The larger catalyst was rejected more by all the membranes irrespective of the solvent
used; however, the smaller catalyst was the most poorly rejected. The XLE membrane was found to
reject Pd(OAc)2 better at high pressure when dissolved in acetonitrile; however, Pd(PPh3)2Cl2 was
well rejected by almost all membranes when dissolved in 2-propanol instead of acetonitrile. Besides,
the degree of catalyst-separation was found to be influenced by membrane–solvent, solute–solvent,
and membrane-solute interactions. However, these issues are currently not yet fully understood and
provide exciting challenges for further research. In the meantime, these issues are major limitations for
the industrial application of the membrane–catalyst separation protocol.

It can be concluded that the integrity of NF90, NF270, and BW30 membranes are not affected by
solvent types and pressure between 10–20 bar. On the contrary, the separation integrity of XLE in
acetonitrile is compromised at a pressure of 20 bar. For an effective separation, recovery, and reuse
of selected the Pd-based catalysts, a more elaborate investigation involving the application of the
response surface (statistical) in the optimization of the dead-end filtration unit must be conducted.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0375/10/8/166/s1,
Supplementary materials from this study which include AFM image and SEM micrographs are provided as
supporting information.
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