Lactic Acid Permeation through Deep Eutectic Solvents-Based Polymer Inclusion Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. DES Preparation
2.3. Membrane Preparation
2.4. Permeation Experiment
3. Results and Discussion
3.1. Effects of DES and Membrane
3.2. Permeation Mechanism
3.3. Comparing PIM with SLM
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eş, I.; Khaneghah, A.M.; Barba, F.J.; Saraiva, J.A.; Sant’Ana, A.S.; Hashemi, S.M.B. Recent advancements in lactic acid production—A review. Food Res. Int. 2018, 107, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Komesu, A.; de Oliveria, J.A.R.; Martins, L.H.S.; Maciel, M.R.W.; Filho, R.M. Lactic acid production to purification: A review. BioResources 2017, 12, 4364–4383. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Thakur, A.; Panesar, P.S. Lactic acid and its separation and purification techniques: A review. Rev. Environ. Sci. Biotechnol. 2019, 18, 823–853. [Google Scholar] [CrossRef]
- Othman, M.; Ariff, A.B.; Rios-Solis, L.; Halim, M. Extractive fermentation of lactic acid in lactic acid bacteria cultivation: A review. Front. Microbiol. 2017, 8, 2285. [Google Scholar] [CrossRef]
- O’rourke, M.; Cattrall, R.W.; Kolev, S.D.; Potter, I.D. The extraction and transport of organic molecules using polymer inclusion membranes. Solv. Extr. Res. Dev. Jpn. 2009, 16, 1–12. [Google Scholar]
- Matsumoto, M.; Hasegawa, W.; Kondo, K.; Shimamura, T.; Tsuji, M. Application of supported ionic liquid membranes using a flat sheet and hollow fibers to lactic acid recovery. Desalin. Water Treat. 2010, 14, 37–46. [Google Scholar] [CrossRef]
- Matsumoto, M.; Panigrahi, A.; Murakami, Y.; Kondo, K. Effect of ammonium and phosphonium based ionic liquids on the separation of lactic acid by supported ionic liquid membranes (SILMs). Membranes 2011, 1, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Murakami, Y.; Minamidate, Y.; Kondo, K. Separation of lactic acid through polymer inclusion membranes containing ionic liquids. Sep. Sci. Technol. 2012, 47, 354–359. [Google Scholar] [CrossRef]
- Dwamena, A.K. Recent advances in hydrophobic deep eutectic solvents for extraction. Separations 2019, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Dou, H.; Zhang, L.; Wang, B.; Sun, Y.; Yang, H.; Huang, Z.; Bi, H. Novel supported liquid membranes based on deep eutectic solvents for olefin-paraffin separation via facilitated transport. J. Membr. Sci. 2017, 536, 123–132. [Google Scholar] [CrossRef]
- Jiang, B.; Dou, H.; Wang, B.; Sun, Y.; Huang, Z.; Bi, H.; Zhang, L.; Yang, H. Silver-based deep eutectic solvents as separation media: Supported liquid membranes for facilitated olefin transport. ACS Sustain. Chem. Eng. 2017, 5, 6873–6882. [Google Scholar] [CrossRef]
- Deng, R.; Sun, Y.; Bi, H.; Dou, H.; Yang, H.; Wang, B.; Tao, W.; Jiang, B. Deep eutectic solvents as tuning media dissolving Cu+ used in facilitated transport supported liquid membrane for ethylene/ethane separation. Energy Fuels 2017, 31, 11146–11155. [Google Scholar] [CrossRef]
- Nasib, A.M.; Hatim, I.; Jullok, N.; Rasidi, S. Preparation of supported-deep eutectic solvent membranes: Effects of bath medium composition on the structure and performance of supported-deep eutectic solvent membrane for CO2/N2 gas separation. Malya. J. Fund. Appl. Sci. 2020, 16, 338–341. [Google Scholar]
- Saeed, U.; Khan, A.L.; Gilani, M.A.; Aslam, M.; Khan, A.U. CO2 separation by supported liquid membranes synthesized with natural deep eutectic solvents. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Rajabi, M.; Ghassab, N.; Hemmati, M.; Asghari, A. Highly effective and safe intermediate based on deep eutectic medium for carrier less-three phase hollow fiber microextraction of antiarrhythmic agents in complex matrices. J. Chromatogr. B 2019, 1104, 196–204. [Google Scholar] [CrossRef]
- Dietz, C.H.J.T.; Kroon, M.C.; Di Stefano, M.; van Sint Annaland, M.; Gallucci, F. Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane. Faraday Discuss. 2018, 206, 77–92. [Google Scholar] [CrossRef]
- Li, Z.; Cui, Y.; Shen, Y.; Li, C. Extraction process of amino acids with deep eutectic solvents-based supported liquid membranes. Ind. Eng. Chem. Res. 2018, 57, 4407–4419. [Google Scholar] [CrossRef]
- Vos, K.D.; Burris, F.O., Jr.; Riley, R.L. Kinetic study of the hydrolysis of cellulose acetate in the pH range of 2–10. J. Appl. Polym. Sci. 1966, 10, 825–832. [Google Scholar] [CrossRef]
- Marcus, Y. Deep Eutectic Solvents; Springer: Berlin/Heidelberg, Germany, 2019; pp. 83–85. [Google Scholar]
- Ola, P.D.; Matsumoto, M. Use of deep eutectic solvent as extractant for separation of Fe(III) and Mn(II) from aqueous solution. Sep. Sci. Technol. 2019, 54, 759–765. [Google Scholar] [CrossRef]
- Wang, D.; Cattral, R.W.; Li, J.; Almeida, M.I.G.S.; Stevens, G.W.; Kolev, S.D. A poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer inclusion membrane (PIM) containing LIX84I for the extraction and transport of Cu(II) from its ammonium sulfate/ammonia solutions. J. Membr. Sci. 2017, 542, 272–279. [Google Scholar] [CrossRef]
- Varughese, K.T.; De, P.P.; Sanyal, S.K. Contact angle behavior of poly(vinyl chloride)/expoxidized natural rubber miscible blend. J. Adhesion. Sci. Technol. 1989, 3, 541–550. [Google Scholar] [CrossRef]
- Wongchitphimon, S.; Wang, R.; Jiraratananon, R. Surface modification of polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) hollow fiber membrane for membrane gas adsorption. J. Membr. Sci. 2011, 381, 183–191. [Google Scholar] [CrossRef]
No | HBD | HBA | HBD:HBA (Molar Ratio) [19] | Log KO/W(HBD) + Log KO/W(HBA) (*1) | Ref. |
---|---|---|---|---|---|
1 | Urea | Choline chloride | 2:1 | −7.7 | |
2 | Glucose | Choline chloride | 1:2 | −8.3 | |
3 | Decanoic acid | Tetrabutylammonium chloride | 2:1 | 4.9 | |
4 | Octanoic acid | Tetrabutylammonium chloride | 2:1 | 3.9 | |
5 | Hexanoic acid | Tetrabutylammonium chloride | 2:1 | 2.8 | |
6 | Octanoic acid | Tetraethylammonium chloride | 2:1 | −0.1 | |
7 | Hexanoic acid | Tetraethylammonium chloride | 2:1 | −1.2 | |
8 | Octanoic acid | Lidocaine | 2:1 | 5.3 | |
9 | Hexanoic acid | Lidocaine | 2:1 | 4.2 | |
10 | Octanoic acid | DL-Menthol | 2:1 | 6.4 | |
11 | Hexanoic acid | DL-Menthol | 2:1 | 5.2 | |
12 | Thymol | Lidocaine | 2:1 | −1.4 | 16 |
13 | PTS | Choline chloride | 2:1 | −5.6 | 17 |
14 | 1-Phenylethanol | Choline chloride | 4:1 | −3.3 | 15 |
DES (*1) | P (h−1) | CR/CF0 at 48 h |
---|---|---|
1 | 0.204 | 0.60 |
1S (*2) | 0.146 | 0.48 |
2 | 0.216 | 0.53 |
2S (*2) | 0.142 | 0.46 |
3 | 0 | 0.06 |
4 | 0.175 | 0.07 |
5 | 0.099 | 0.11 |
6 | 0.167 | 0.10 |
7 | 0.128 | 0.16 |
8 | 0.091 | 0.16 |
9 | 0.098 | 0.20 |
10 | 0.103 | 0.26 |
11 | 0.125 | 0.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, M.; Takemori, S.; Tahara, Y. Lactic Acid Permeation through Deep Eutectic Solvents-Based Polymer Inclusion Membranes. Membranes 2020, 10, 244. https://doi.org/10.3390/membranes10090244
Matsumoto M, Takemori S, Tahara Y. Lactic Acid Permeation through Deep Eutectic Solvents-Based Polymer Inclusion Membranes. Membranes. 2020; 10(9):244. https://doi.org/10.3390/membranes10090244
Chicago/Turabian StyleMatsumoto, Michiaki, Sae Takemori, and Yoshiro Tahara. 2020. "Lactic Acid Permeation through Deep Eutectic Solvents-Based Polymer Inclusion Membranes" Membranes 10, no. 9: 244. https://doi.org/10.3390/membranes10090244
APA StyleMatsumoto, M., Takemori, S., & Tahara, Y. (2020). Lactic Acid Permeation through Deep Eutectic Solvents-Based Polymer Inclusion Membranes. Membranes, 10(9), 244. https://doi.org/10.3390/membranes10090244