Viscosity Modification of Polymerizable Bicontinuous Microemulsion by Controlled Radical Polymerization for Membrane Coating Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals Used
2.2. Preparation of Polymerizable Bicontinuous Microemulsions (PBM)
2.3. Pore Intrusion Potential for UF PES Membranes
2.4. PBM Controlled Radical Polymerization (CRP) Set-up
2.5. Rheological Investigations
2.6. Nuclear Magnetic Resonance Spectroscopy
2.7. Membrane Coating Process
2.8. Model Foulant Tests
3. Results and Discussion
3.1. Pore Intrusion Identification in PBM-coated Membranes after UV-LED Polymerization
3.2. Controlled Radical Polymerization (CRP) of PBM
- (1)
- Polymerization initiation using 1.8 mg APS activated by 40.5 µL TMEDA in a water bath at a 20 °C constant temperature
- (2)
- Polymerization inhibition with 0.9 mg of TEMPO-dosage administered after a defined time from initiation (controlled radical polymerization time, Δti = 7, 8, 9 and 10 min). This leads to controlled radical polymerized PBMs (CRP-PBMs) of different viscosities depending on the polymerization time Δt.
3.3. Rheological Examination
3.4. Nuclear Magnetic Resonance Spectroscopy
3.5. Model Foulant Tests and the Relationship Between the Individual Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galiano, F.; Figoli, A.; Deowan, S.A.; Johnson, D.; Altinkaya, S.A.; Veltri, L.; de Luca, G.; Mancuso, R.; Hilal, N.; Gabriele, B.; et al. A step forward to a more efficient wastewater treatment by membrane surface modification via polymerisable bicontinuous microemulsion. J. Membr. Sci. 2015, 482, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Deowan, S.A.; Galiano, F.; Hoinkis, J.; Johnson, D.; Altinkaya, S.A.; Gabriele, B.; Hilal, N.; Drioli, E.; Figoli, A. Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. J. Membr. Sci. 2016, 510, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Figoli, A. Synthesis of Nanostructured Mixed Matrix Membrane for Facilitated Gas Separation. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2001. [Google Scholar]
- Galiano, F. Preparation and Characterisation of Polymerisable Bicontinous Microemeulsion Membranes for Water Treatment Application. Ph.D. Thesis, University of Calabria, Rende, Italy, 2013. [Google Scholar]
- BioNexGen. Development of the Next Generation Membrane Bioreactor System. Steinbeis-Stiftung für Wirtschaftsförderung (StW), 2013. Available online: www.bionexgen.eu (accessed on 11 December 2019).
- Schmidt, S.A. Innovative UV-LED Polymerised Bicontinuous Microemulsion Coating for Membranes with Special Emphasis on MBRs. Ph.D. Thesis, University of Calabria, Rende, Italy, 2016. [Google Scholar]
- Galiano, F.; Schmidt, S.A.; Ye, X.; Kumar, R.; Mancuso, R.; Curcio, E.; Gabriele, B.; Hoinkis, J.; Figoli, A. UV-LED induced bicontinuous microemulsions polymerisation for surface modification of commercial membranes—Enhancing the antifouling properties. Sep. Purif. Technol. 2018, 194, 149–160. [Google Scholar] [CrossRef]
- Platkowski, K.; Reichert, K.-H. Untersuchungen zum Stoppen der radikalischen Polymerisation von Methylmethacrylat mit dem Inhibitor 4-Hydroxy-Tempo. Chem. Ing. Tech. 1999, 71, 493–496. [Google Scholar] [CrossRef]
- Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63–235. [Google Scholar] [CrossRef]
- Menter, P. Acrylamide Polymerisation—A Practical Approach; Bio-Rad Laboratories: Hercules, CA, USA, 2000; Volume 1156. [Google Scholar]
- Mancuso, R.; Amuso, R.; Armentano, B.; Grasso, G.; Rago, V.; Capello, A.R.; Galiano, F.; Figoli, A.; de Luca, G.; Hoinkis, J.; et al. Synthesis and antimicrobial activity of polymerisableacryloyloxyalkyltriethyl ammonium salts. ChemPlusChem 2017, 82, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Santoro, S.; Sebastian, V.; Moro, A.J.; Portugal, C.A.; Lima, J.C.; Coelhoso, I.; Crespo, J.G.; Mallada, R. Development of fluorescent thermoresponsive nanoparticles for temperature monitoring on membrane surfaces. J. Colloid Interface Sci. 2017, 486, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helfferich, F.G. Polymerization, Chapter 11. In Kinetics of Multistep Reactions, 2nd ed.; Elsevier Science Ltd.: Oxford, UK, 2004; pp. 347–402. [Google Scholar]
- Andrzejewska, E. Free Radical Photopolymerization of Multifunctional Monomers, Chapter 2. In Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications, 1st ed.; William Andrew Publishing: Norwich, UK, 2016; pp. 62–81. [Google Scholar]
- Laws, D.D.; Bitter, H.-M.L.; Jerschow, A. Solid-State NMR Spectroscopic Methods in Chemistry. Angew. Chem. Int. Ed. 2002, 41, 3096–3129. [Google Scholar] [CrossRef]
- Metz, G.; Wu, X.; Smith, S. Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR. J. Magn. Reson. Ser. A 1994, 110, 219–227. [Google Scholar] [CrossRef]
- Samiullah, M.H.; Pulst, M.; Golitsyn, Y.; Busse, K.; Poppe, S.; Hussain, H.; Reichert, D.; Kressler, J. Solid State Phase Transitions in Poly(ethylene oxide) Crystals Induced by Designed Chain Defects. Macromolecules 2018, 51, 4407–4414. [Google Scholar] [CrossRef]
- Mauri, M.; Ponting, M.; Causin, V.; Simonutti, R.; Pisciotti, F. Morphological reorganization and mechanical enhancement in multilayered polyethylene/polypropylene films by layer multiplication or mild annealing. J. Polym. Sci. Part B Polym. Phys. 2017, 56, 520–531. [Google Scholar] [CrossRef]
- Leea, T.Y.; Guymonc, C.A.; Jönssonb, E.S.; Hoylea, C.E. The effect of monomer structure on oxygen inhibition of (meth)acrylates photopolymerization. Polymer 2004, 45, 6155–6162. [Google Scholar] [CrossRef]
- Yoon, S.-H. Principle of Membrane Filtration, Chapter 1. In Membrane Bioreactor Processes—Principles and Applications; Apple Academic Press Inc.: Oakville, CA, USA, 2016; pp. 1–49. [Google Scholar]
- Ozaki, T.; Koto, T.; Nguyen, T.V.; Nakanishi, H.; Norisuye, T.; Tran-Cong-Miyata, Q. The roles of the Trommsdorff-Norrish effect in phase separation of binary polymer mixtures induced by photopolymerization. Polymer 2015, 55, 1809–1816. [Google Scholar] [CrossRef]
- Mat, S.C.; Idroas, M.; Teoh, Y.; Hamid, M. Optimisation of viscosity and density of refined palm Oil-Melaleuca Cajuputi oil binary blends using mixture design method. Renew. Energy 2019, 133, 393–400. [Google Scholar] [CrossRef]
- Weiss, P. Photo induced Polymerisation. Pure Appl. Chem. 1966, 15, 587–600. [Google Scholar] [CrossRef]
- Kolodziejski, W.; Klinowski, J. Kinetics of Cross-Polarization in Solid-State NMR: A Guide for Chemists. Chem. Rev. 2002, 102, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Simonutti, R.; Comotti, A.; Bracco, S.; Sozzani, P. Surfactant Organization in MCM-41 Mesoporous Materials as Studied by13C and29Si Solid-State NMR. Chem. Mater. 2001, 13, 771–777. [Google Scholar] [CrossRef]
- Mauri, M.; Floudas, G.; Simonutti, R. Local Order and Dynamics of Nanoconstrained Ethylene-Butylene Chain Segments in SEBS. Polymers 2018, 10, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm, M.; Neidhöfer, M.; Spiegel, S.; Spiess, H.W. A collection of solid-state13C CP/MAS NMR spectra of common polymers. Macromol. Chem. Phys. 1999, 200, 2205–2207. [Google Scholar] [CrossRef]
- Odian, G.G. Stereochemistry of Polymerization, Chapter 8. In Principles of Polymerization, 4th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2004; pp. 619–767. [Google Scholar]
- Bonetti, S.; Farina, M.; Mauri, M.; Koynov, K.; Butt, H.-J.; Kappl, M.; Simonutti, R. Core@shell Poly(n -butylacrylate)@polystyrene Nanoparticles: Baroplastic Force-Responsiveness in Presence of Strong Phase Separation. Macromol. Rapid Commun. 2016, 37, 584–589. [Google Scholar] [CrossRef] [PubMed]
Substance | Acronym | Function | Mass Fraction | Molecular Formula | Purity |
---|---|---|---|---|---|
Deionized water 1 | DI water | Water phase | 41 w% | H2O | <1.6 µS∙cm−1 |
Methylmethacrylate 1 | MMA | Oil phase | 21 w% | C5H8O2 | 99% |
2-hydroxylethylmeth-acrylate 1 | HEMA | Co-surfactant | 10 w% | C6H10O3 | ≥99% |
Ethylene glycol dimethacrylate 1 | EGDMA | Cross-linker | 3 w% | C10H14O4 | 98% |
Acryloyloxyundecyl-triethyl ammonium bromide 1 | AUTEAB | Main-surfactant | 25 w% | C20H40BrNO2 | >90% |
1-Hydroxy-cyclohexyl-phenyl-ketone 2 | Irgacure 184 | Photo initiator | 1.8, 2.3, 5 w% * | C13H16O2 | 99% |
Ammonium persulfate 3 | APS | REDOX initiator | 0.12, 0.3 w% * | H8N2O8S2 | ≥98% |
N,N,N′,N′-Tetramethylethylene-diamine 3 | TMEDA | APS activator | 2.7 w% * | C6H16N2 | ~99% |
2,2,6,6-tetramethylpiperidine 1-oxyl 4 | TEMPO | Inhibitor | 0.1 w% * | C9H18NO | 98% |
Sample | Δti | Viscosity | Deviation |
---|---|---|---|
min | mPa·s | mPa·s | |
Unpolymerized PBM | 0 | 7.03 | ± 0.05 |
REDOX-PBM | 5.5 | 7.1 | ± 0.07 |
CRP-PBM | 7 | 8.1 | ± 0.09 |
8 | 9.6 | ± 0.18 | |
9 | 8.3 | ± 0.02 |
Sample Name | Integrals CP Signals | Integrals HPDEC Signals | |||||
---|---|---|---|---|---|---|---|
8.5 (ppm) | 18.1 (ppm) | 22–29 (ppm) | 8.5 (ppm) | 18.1 (ppm) | 22–29 (ppm) | 177 (ppm) | |
CRP-PBM-9 | 1 | 3.7 | 7.9 | 1 | 0.86 | 3.25 | 1.19 |
UV-LED-1.8 | 1 | 2.7 | 9.4 | 1 | - | - | - |
UV-LED-5 | 1 | 3.3 | 9.2 | 1 | 0.55 | 2.89 | 0.82 |
REDOX-PBM | 1 | 6.2 | 12.5 | 1 | 0.95 | 3.05 | 1.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gukelberger, E.; Hitzel, C.; Mancuso, R.; Galiano, F.; Bruno, M.D.L.; Simonutti, R.; Gabriele, B.; Figoli, A.; Hoinkis, J. Viscosity Modification of Polymerizable Bicontinuous Microemulsion by Controlled Radical Polymerization for Membrane Coating Applications. Membranes 2020, 10, 246. https://doi.org/10.3390/membranes10090246
Gukelberger E, Hitzel C, Mancuso R, Galiano F, Bruno MDL, Simonutti R, Gabriele B, Figoli A, Hoinkis J. Viscosity Modification of Polymerizable Bicontinuous Microemulsion by Controlled Radical Polymerization for Membrane Coating Applications. Membranes. 2020; 10(9):246. https://doi.org/10.3390/membranes10090246
Chicago/Turabian StyleGukelberger, Ephraim, Christian Hitzel, Raffaella Mancuso, Francesco Galiano, Mauro Daniel Luigi Bruno, Roberto Simonutti, Bartolo Gabriele, Alberto Figoli, and Jan Hoinkis. 2020. "Viscosity Modification of Polymerizable Bicontinuous Microemulsion by Controlled Radical Polymerization for Membrane Coating Applications" Membranes 10, no. 9: 246. https://doi.org/10.3390/membranes10090246
APA StyleGukelberger, E., Hitzel, C., Mancuso, R., Galiano, F., Bruno, M. D. L., Simonutti, R., Gabriele, B., Figoli, A., & Hoinkis, J. (2020). Viscosity Modification of Polymerizable Bicontinuous Microemulsion by Controlled Radical Polymerization for Membrane Coating Applications. Membranes, 10(9), 246. https://doi.org/10.3390/membranes10090246