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Abstract: This paper proposes a Gaussian approach for the proton-exchange membrane fuel cell
(PEMFC) model that estimates its voltage behavior from the operating current value. A multi-
parametric Gaussian model and an unconstrained optimization formulation based on a conventional
non-linear least squares optimizer is mainly considered. The model is tested using experimental data
from the Ballard Nexa 1.2 kW fuel cell (FC). This methodology offers a promising approach for static
and current-voltage, characteristic of the three regions of operation. A statistical study is developed
to evaluate the effectiveness and superiority of the proposed FC Gaussian model compared with the
Diffusive Global model and the Evolution Strategy. In addition, an approximation to the exponential
function for a Gaussian model simplification can be used in systems that require real-time emulators
or complex long-time simulations.

Keywords: Gaussian model; proton exchange membrane fuel cell; diffusive model; evolution strategy;
voltage-current dynamic response

1. Introduction

During recent years, fuel cells (FC) have been one of the most researched topics due
to several characteristics suitable for large-scale energy storage. Compared with other
technologies, such as wind and photovoltaic (PV) generation, fuel cell technology does not
have geographic requirements [1]. Therefore, this technology is rapidly expanding, and
several lines of research have emerged associated with different sectors. The main sectors
behind the development of fuel cells are: transportation, residential heat production, com-
merce and industry, electric power, and renewable energy [2–5]. A fuel cell system consists
of generating electric power from the chemical reaction between hydrogen and oxygen or
natural air in catalyst cells [6,7]. The proton-exchange membrane fuel cell (PEMFC) has
received significant attention from researchers. It is considered one of the best FC alterna-
tives for applications in different sectors due to its relatively low-temperature operation,
which assures fast start up, the highest efficiency and zero pollution emission [8,9]. Due to
the numerous applications of PEMFC, an accurate model is necessary for understanding
the dynamic process and the behavior of this fuel cell [10].
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For different applications, an FC simulation or hardware emulation is necessary for
prototype design, testing, and fault diagnosis, reducing the overall cost [11]. Existing FC
simulators and emulators are based on curve fitting, cell equivalent-impedance model, and
employment of artificial intelligence algorithms using a massive amount of data from a
real FC battery [12–15]. Therefore, several models that describe the phenomena occurring
within fuel cells have been developed [16,17].

The FC models comparison, based on analytical and numerical procedures, is shown
in Table 1. The models presented in [7,16,18–22] consider a linear steady-state response,
ignoring the voltage-current dynamic response. Therefore, these models are not viable for
the analysis of the dynamic FC process. On the other hand, most of the models contemplate
an analytical approach based on the physical system of the FC. These approaches need
several variables to evaluate the model, such as the operating absolute temperature of the
fuel cell ( f f c), the operating current of the fuel cell (i f c), the partial pressures of hydrogen
and oxygen at the input channels of the fuel cell stack (PH2 and PO2), and the resistance
of membrane surface (Rm). However, due to implementation expenses, using multiple
variables for its evaluation increases the development costs and the requirements of the
high-processing device. As an alternative method for dynamic modeling, this work in-
troduces a novel FC model based on a Gaussian approach. Such an approach consists of
a multi-parametric Gaussian model solved by an unconstrained optimization formula-
tion [23]. Specifically, the optimal solution comes from a trust-region-based non-linear least
squares optimizer. The model includes both the steady-state and transient responses of
the actual fuel cell. Moreover, the model only needs the operating current of the fuel cell
to predict the output voltage behavior; this is true for large-signal step-type variations at
any point of the whole operation range of the current. Thus, the model is suitable to be
implemented in a low-cost (digital signal controller) DSC. Based on this state-of-the-art
review, the following are the main contributions of this paper:

• Provides a novel FC model to estimate the output voltage behavior from the operating
current of a fuel cell for steady-state and dynamic responses.

• The training complexity of the algorithm is medium, which makes it easily adaptable
to different profiles for testing.

• The proposed FC model can be used in computer simulations and hardware emulators
due to its simple implementation using an approximation to the exponential function.

• A commercial Nexa Fuel Cell Power Module is used to validate the proposed FC model.
• The results are compared using analytical and numerical techniques under the same

data acquisition parameter to ensure a fair comparison between the models.
• The obtained results prove the effectiveness of the proposed FC model compared with

the Evolution strategy [8] and the diffusive model [24].

This paper is structured as follows: Section 2 outlines the multi-parametric Gaussian
model considered in this work. Next, Section 3 describes the unconstrained non-linear
optimization formulation that determines the optimal solution for the model parameters.
Afterward, Section 4 gathers the experimental results and draws the discussion. Finally,
the conclusions are presented in Section 5.
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Table 1. Fuel cell models comparison.

FC Model
Strategy Ref. Static

Model
V-I Dynamic

Model
Variables Used to

Evaluate the Model
Training

Complexity
Implemen-Tation

Cost
Tested with a

Real FC

CHHO [7] Í ë Tf c, i f c, PH2 , PO2 , Rm M H ë
GOA [25] Í Í Tf c, i f c, PH2 , PO2 , Rm L H ë

GWO [16] Í ë Tf c, i f c, PH2 , PO2 , Rm L H ë

HGA [18] Í ë Tf c, i f c, PH2 , PO2 , Rm L H ë
Electrical

circuit [26] Í Í Tf c, i f c, PH2 , PO2 , Rm ë H Í

MAEO [19] Í ë Tf c, i f c, PH2 , PO2 , Rm L H ë

VSDE [20] Í ë Tf c, i f c, PH2 , PO2 , Rm M H ë

ASO [21] Í ë Tf c, i f c, PH2 , PO2 , Rm H H ë
Electrical

model [6] Í Í Tf c, i f c, PH2 , PO2 , Rm ë H Í

MPA-PO [27] Í Í Tf c, i f c, PH2 , PO2 , Rm M H ë

TS-KF [28] Í Í Tf c, i f c H H Í

ARX-RLS [10] Í Í Tf c, i f c, PH2 , PO2 , Rm L H ë

Bézier Curve [22] Í ë i f c M H Í

ES [8] Í Í Tf c, i f c, PH2 , PO2 , Rm ë H Í
Diffusive

model [24] Í Í i f c H M Í

This work [-] Í Í i f c M L Í

2. Gaussian Model

The Gaussian model–better known as Gaussian peaks–is widely used in different
areas of science and applied research, such as biology, physics, chemistry, and engineering,
when curve fitting is required [29,30].

Let g(x, Θ) be the Gaussian model in one dimension, and Θ = [A, µ, σ] the vector of
parameters to be estimated, which can be expressed using Equation (1)

g(x, Θ) = Ae−((x−µ)/σ)2
, (1)

where A is the amplitude of the curve, µ represents the position of the center of the peak,
and σ is a free parameter controlling the width of the curve. Figure 1 illustrates the effect
of the Gaussian peaks method at different values of σ.

In general, a multi-Gaussian model, denoted as fGauss(x), is described by the following
Gaussian series:

fGauss(x) =
N

∑
i=1

gi(x, Θi),

=
N

∑
i=1

Aie−((x−µi)/σi)
2

(2)

= A1e−((x−µ1)/σ1)
2
+

...

+ ANe−((x−µN)/σN)2
.

where N is the considered number of peaks.
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Figure 1. Resulting curve of the Gaussian peaks method when varying the values of the free
parameter σ.

3. Unconstrained Nonlinear Optimization

Given a set of data points (xi, yi), i ∈ {1, . . . , m}, the objective is to find the vector of
parameters Θ that makes the best fit to the model defined in Equation (2). Likewise, let
r(Θ) = (r1(Θ), r2(Θ), . . . , rm(Θ))T be the vector that holds the fitting errors between the
data and the model so that ri(Θ) = yi − g(xi, Θ).

Accordingly, the objective function F(Θ) to be considered is the sum of the squares of
r(Θ) using the Euclidean norm as a metric, as follows:

F(Θ) = ‖r(Θ)‖2
2 =

m

∑
i=1

(yi − g(xi, Θ))2. (3)

Since finding the vector Θ that minimizes this objective function is equivalent to
minimizing the fitting error, and for the sake of solution feasibility, the optimization
problem can be established as min

Θ∈Rn
F(Θ).

In this work, the widely-used the Gauss-Newton method is chosen to find an optimal
solution [31]. Hence, Θ is obtained in an iterative search from an initialization value using
the expression:

Θk+1 = Θk − [Jr(Θk)
T Jr(Θk)]

−1 Jr(Θk)
Tr(Θk), (4)

where k represents the number of iterations, Jr denotes the Jacobian matrix of the residual
vector and ∇ is the gradient operator. Jr(Θ) is calculated using:

Jr(Θ)=



∂r1(Θ)
∂θ1

∂r1(Θ)
∂θ2

· · · ∂r1(Θ)
∂θn

∂r2(Θ)
∂θ1

∂r2(Θ)
∂θ2

· · · ∂r2(Θ)
∂θn

...
...

. . .
...

∂rm(Θ
∂θ1

∂rm(Θ)
∂θ2

· · · ∂rm(Θ)
∂θn


=


∇r1(Θ)T

∇r2(Θ)T

...
∇rm(Θ)T

.

Many of the methods used in optimization are based on a trust-region-type approach,
which results appropriate for approximation problems. In a trust-region algorithm, the
approximate model is only reliable in a region close (being neighbor) to the current itera-
tion [32]. Such a neighborhood can be represented as a ball in some norm, the radius ∆k
updates from one iteration to another, according to how accurately the model approximates
the objective function on the trial point [33].
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In addition, as trust-region methods are based on the classical Levenberg-Marquardt
method for nonlinear equations using approximations of the Hessian matrix, they become
efficient computationally. From (4), it can be inferred that the iterative method for a given
initialization value is:

Θk+1 = Θk − [Jr(Θk)
T Jr(Θk) + ∆k I]−1 Jr(Θk)

Tr(Θk), (5)

where ∆k is a positive scalar and I is the identity matrix of order n.
A more relevant approach to the Gaussian model is expressing the exponential func-

tion as a power, as seen in (6). For large n, a useful approximation can be obtained using:

ex ≈
(

1 +
x
n

)n
, (6)

which has a low implementation cost, as shown in (14). In this case, model (2) can be
expressed as:

fGauss(x) ≈ f̃Gauss(x)

=
N

∑
i=1

Ai

[
1 +

(−((x− µi)/σi)
2)

n

]n

. (7)

Algorithm 1 summarizes the steps to calculate the parameters of a non-linear model
such as the Gaussian model. Finally, as the mathematical statements presented above
are expressed in terms of the generic independent variable x, as well as the dependent
variables fGauss(x), and f̃Gauss(x), the correspondence of variables for CF purposes is
mentioned below:

• The electric current I is x,
• while the voltage v can be either fGauss(I) or the approximation f̃Gauss(I).

Algorithm 1: Unconstrained nonlinear optimization procedure.

Input: Measured dataset {(xi, yi)}m
i=1

1: Use the mathematical model defined by Equation (2)
2: Determine the specific objective function F(Θ) to be minimized

through Equation (3)
3: Calculate the residual vector ri(Θ) = yi − g(xi, Θ)
4: Determine the Jacobian matrix Jr(Θ)
5: Use a Non-linear Least Squares algorithm to estimate the optimal parameters

as described in Equation (5)
Output: The vector parameter Θ

4. Experimental Results

The Nexa fuel cell is a fully integrated system that produces unregulated DC power,
up to 1.2 kW, from a supply of hydrogen and air. The Nexa power module comes with
LabVIEW software, which provides a graphical user interface to the operational status and
performance of the Nexa module [34]. Figure 2 shows the experimental Nexa PEMFC data
acquisition configuration used for training and validation of the Gaussian model.
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Tektronix TM502A Power Module

+ AM503B current probe amplifier

+ the A6303 current probe
LeCroy WaveSurfer 64Xs-A

oscilloscope that saves trace

data to an internal memory 

location

National instruments

GPIB-USB-HS

Nexa power module from Ballard Power Systems

+ fume cupboard

Agilent 6050A 

Electronic load

Desktop computer + LabVIEW program to control the electronic

load + software program to monitoring the Nexa Fuel Cell.

Serial communication port to a computer through a RS485 to RS232 converter

FC voltage

FC current

Figure 2. Experimental data adquisition configuration used for the Gaussian model training and validation.

The LeCroy WaveSurfer 64Xs-A oscilloscope has been used to achieve fast acquisition,
long capture time, and data saving on its onboard hard drive. An oscilloscope is used
to directly acquire and store the data corresponding to the fuel cell current and voltage
signals. Thus, the maximum sampling limitation of the Nexa software is avoided, achiev-
ing sampling periods up to 20 µs. In addition, a virtual instrument is developed using
LabVIEW, that generates the current profiles through the DC electronic load control using
its GPIB communication port like a constant current load.

4.1. Training Models

This work proposes a Gaussian model to estimate the voltage in a different current
region of the fuel cell. Specifically, the Nexa fuel cell case that has current training data
between 0 A and 45 A. Figure 3 represents the voltage-current characteristics of the Gaus-
sian model and the measured data. The Gaussian model responses agree with the real data
from the fuel cell. In addition, a FC load current profile is generated, as shown in Figure 4,
to reproduce the different operating points and transients to train the model in the entire
operating current FC subdomains.

0 5 10 15 20 25 30 35 40 45 50
24

26

28

30

32

34

36

38

40

42

FC Current [A]

F
C

 V
o

lt
a

g
e

 [
V

]

Experimental data

Gaussian model

Figure 3. V-I characteristics of FC and Gaussian model.

It can be observed that the load profile is provided in A (current) instead of A/cm2

(current density of active area). It is well-known that the current density allows easy
comparison between different FC systems. However, the information about the Nexa active
area is not provided by the manufacturer. Meanwhile, the literature reports different values
such as 100 cm2 in [35], and 110 cm2 in [36], among others.
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Figure 4. FC Gaussian model training.

As for the Gaussian model parameters, as widely discussed in [37,38], the num-
ber of peaks N of Equation (2) may vary from 1 (a single Gaussian component) to a
given maximum number Nmax. As a Taylor series approximation is subsequently applied,
1 ≤ Nmax ≤ 8 is an advisable search interval. In this work, a sub-optimal value of N is
obtained experimentally as 6. Likewise, the value of n is swept in an adequate interval as is
explained in Section 4.3. In such vein, the optimal values of the model coefficients of (2) are
obtained following the trust-region Equation (5). Therefore, the appropriate mathematical
Gaussian model for the characteristics of the data is described as a sum of six Gaussian
peaks, as seen in model of Equation (8). Therefore, this approach requires 18 parameters
to established.

The resulting Gaussian model is given by (8):

fGauss(I) = 12.43 · e(−((I−0.4927)/3.372)2)

+ 4.438 · e(−((I−7.067)/4.409)2)

+ 1.522 · e(−((I−16.4)/0.8977)2) (8)

+ 32.39 · e(−((I−16.72)/36.84)2)

+ 0.5889 · e(−((I−31.42)/0.7715)2)

+ 8.769 · e(−((I−47.17)/12.34)2).

It can observed that, as the current drawn from the FC increases, the FC voltage
decreases; additionally, the simulated FC voltage closely follows the experimental FC
voltage. The most significant deviation between the experimental voltage values and the
ones estimated by the model happens at 3410.74 s, corresponding to a current step of
44.45 A. At this point, the voltage difference is 2.75 V, corresponding to a relative error of
11.46%. This point is observed in the zoomed view presented in Figure 4. The modeling
results are quantified in Figure 4 using root mean square error (RMSE), defined as:
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RMSE =

√√√√√√
n

∑
t=1

(yk − ŷk)
2

np
, (9)

where (yk − ŷk) is the error between the measured and the estimated FC output voltages,
and np is the number of steps of the discrete signal. The obtained results are considered
satisfactory, given the fact that, for the proposed model, the RMSE is 0.27 V.

4.2. Validating Model

The validation of the proposed model is carried out by the test shown in Figure 5,
which is different from the one used during training. This current profile is much more
demanding than the one used for the validation stage because it has current step changes
that are higher in magnitude. The proposed model is compared with the diffusive approach
introduced and widely studied in [24]. The maximum deviation for both models happens at
518.14 s for 38.42 A. At this point, the difference between the Gaussian model voltage value
and the experimental one is 2.86 V, with a relative error of 11.97%. For the diffusive model,
the voltage difference is 4.87 V, with a relative error of 24.7%. Therefore, the Gaussian model
fits the experimental data for validation better than the diffusive model, with an RMSE
of 0.65 V for the Gaussian model and 1.05 V for the Diffusive model. Figure 6 shows the
sensitivity of the FC models regarding different metrics. The mathematical expressions for
R-square, relative error (RE), mean absolute error (MAE), and standard deviation (SD) are:

R-square =

np

np

∑
t=1

yk ŷk −
np

∑
t=1

yk

np

∑
t=1

ŷk√√√√√
np

np

∑
t=1

y2
k −

( np

∑
t=1

yk

)2
n

np

∑
t=1

ŷ2
k −

( np

∑
t=1

ŷk

)2

× 100%, (10)

RE =

np

∑
t=1

(yk − ŷk)

ŷkmean
× 100%, (11)

MAE =

np

∑
t=1

(yk − ŷk)

n
, (12)

and

SD =

√√√√√√
np

∑
t=1

(yk − ŷk)

np − 1
, (13)

where yk represents the estimated voltage, ŷk is the measured voltage, and ŷkmean is the
mean value of the measured voltage. The statistical analysis -presented in Figure 6 shows
that the proposed Gaussian model has a low error and a high R-square value, compared
with the Diffusive global model.

f̃Gauss(I) = 8.079 · (1 + (−((I − (−2.601))/3.56)2/n))n + 1.572 · 10+11 · (1 + (−((I − (−1154))/238.8)2/n))n

+1.28 · (1 + (−((I − 22.7)/0.1055)2/n))n + 27.41 · (1 + (−((I − 17.41)/95.78)2/n))n. (14)
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Figure 5. Validation of the FC Gaussian model.
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Figure 6. Statistical results of proposed Gaussian model and the Diffusive global model for the profile
shown in Figure 5.

4.3. Comparison of Gaussian Model with the Parameter Identification by Means of
Evolution Strategy

An approach based on parameter identification of an equivalent circuit-based proton-
exchange membrane fuel cell model is introduced in [8] using an ES. Training and validation
data were sampled within a period of 200 ms in [8] , which is 10 times higher than the
sampling in the profile in Figure 4. Therefore, models are, again, both validated and trained,
the current profile used for training the Gaussian model can be observed in Figure 7a, and
the Diffusive Global model is introduced in [24]. The training model results are illustrated
in Figure 7. This figure shows the experimental response of the fuel cell to the load current
profile shown in Figure 7b. The RMSE of the Diffusive Global model is 0.3648 V, for the
parameters adjusted by ES, 0.7961 V, and for the Gaussian approach it is 0.3567 V. Therefore,
the diffusive approach and the Gaussian model have similar predictions of the output
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voltage. For its low implementation cost, the exponential function of the Gaussian model
can be used as shown in the approximation (14) with n = 265.
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Figure 7. Experimental Nexa FC data used for training: (a) current load profile, (b) output voltage
simulated with parameters estimated by means of the ES, the diffusive global model and Gaus-
sian model.

Finally, Figure 8 shows the validation of both approaches, where the RMSE of the
diffusive global model and the parameters adjusted by ES were 2.3273 V and 2.3116 V,
respectively. Meanwhile, the RMSE for the Gaussian approach is 0.47 V. The statistical
results of the proposed Gaussian model are detailed in Figure 9. These results are compared
with those from the Diffusive global model and those from the ES approach. The Gaussian
model has the lowest error value, as it accurately represents the static and the dynamic
current-voltage relation in a PEMFC.
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Figure 8. Cont.
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Figure 8. Experimental Nexa FC data used for validating: (a) current load profile and (b) output
voltage simulated with parameters estimated by means of ES, the diffusive global model and the
Gaussian model.
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R-square [%] 99.45 96.98 91.50

Figure 9. Statistical results of proposed Gaussian model, Diffusive global model and ES approach for
the profile shown in Figure 8.

5. Conclusions

This work develops a PEMFC model based on the Gaussian approach to estimate
the FC voltage for the steady-state and dynamic responses. The results from the pro-
posed model show similar behavior to those obtained on the experimental data with
the Ballard Nexa 1.2 kW FC. Different training and validation profiles are developed to
compare the proposed model with the Diffusive global model and the Evolution strat-
egy based on numerical and analytical techniques. As a remarkable result, the Gaussian
model reached superior performance, and its effectiveness was validated using statistical
measures. In addition, an alternative model is also validated using an approximation
to the exponential function that can be used in hardware emulators due to its lower-
complexity implementation.
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