Progress and Perspectives of Desalination in China
Abstract
:1. Introduction
2. The Main Technical Progress
2.1. The Expanded Project Scale and Single Plant Scale
2.2. The Broadening Application Scenarios and Technical Integration
2.3. Further Improved Equipment Series and Strengthened Supporting Capability
2.4. Improved Research and Development Ability and Technical Level
2.4.1. Core Components and Equipment
2.4.2. Membrane Materials and Technologies
2.4.3. Chemical Resources Recovery
2.4.4. Boron Removal
2.4.5. Novel Technologies
2.5. Enriched Standard Systems and Technical Services
3. Summary and Perspectives
- (1)
- Technology innovation
- (2)
- Utilization of chemical resources from seawater
- (3)
- Green pretreatment methods
- (4)
- Emerging desalination technologies
Author Contributions
Funding
Conflicts of Interest
References
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S.-m. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114569. [Google Scholar] [CrossRef]
- Valavala, R.; Sohn, J.; Han, J.; Her, N.; Yoon, Y. Pretreatment in reverse osmosis seawater desalination: A short review. Environ. Eng. Res. 2011, 16, 205–212. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-García, A.; Nuez, I.; Carrascosa-Chisvert, M.D.; Santana, J.J. Simulations of BWRO systems under different feedwater characteristics. Analysis of operation windows and optimal operating points. Desalination 2020, 491, 114582. [Google Scholar] [CrossRef]
- 2019 National Bulletin of Seawater Use. Available online: http://www.gov.cn/xinwen/2020-10/18/content_5552185.htm (accessed on 18 October 2020).
- Lin, S.; Zhao, H.; Zhu, L.; He, T.; Chen, S.; Gao, C.; Zhang, L. Seawater desalination technology and engineering in China: A review. Desalination 2021, 498, 114728. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wang, Z.Y.; Han, M.Y.; Wang, G.D.; Hayat, T.; Chen, G.Q. Energy-water nexus in seawater desalination project: A typical water production system in China. J. Clean. Prod. 2021, 279, 123412. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, X. Legal measures to reduce marine environmental risks of seawater desalination in China. Nat. Resour. Forum 2020, 44, 129–143. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, D.; Wang, Q.; Zhang, Z. Seawater desalination in China: Retrospect and prospect. Chem. Eng. J. 2014, 242, 404–413. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, L.; Chen, H.-L.; Gao, C.-J. Progress and prospects of seawater desalination in China. Desalination 2005, 182, 13–18. [Google Scholar] [CrossRef]
- Zhou, Y.; Tol, R.S.J. Implications of desalination for water resources in China—An economic perspective. Desalination 2004, 164, 225–240. [Google Scholar] [CrossRef]
- Kurihara, M.; Takeuchi, H. The next generation energy efficient membrane desalination system with advanced key technologies. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 387–406. [Google Scholar] [CrossRef]
- World’s Largest SWRO desalination Plant Operational. Available online: Https://www.desalination.biz/news/0/Worlds-largest-SWRO-desalination-plant-operational/7292/ (accessed on 21 October 2013).
- The Membrane Industry of Association of China. 2019–2020 National Bulletin of Membrane Industry Development; The Membrane Industry of Association of China: Beijing, China, 2020. [Google Scholar]
- Yao, S.; Ji, M. A small RO and MCDI coupled seawater desalination plant and its performance simulation analysis and optimization. Processes 2020, 8, 944. [Google Scholar] [CrossRef]
- Khoshgoftar Manesh, M.H.; Ghalami, H.; Amidpour, M.; Hamedi, M.H. Optimal coupling of site utility steam network with MED-RO desalination through total site analysis and exergoeconomic optimization. Desalination 2013, 316, 42–52. [Google Scholar] [CrossRef]
- Tourab, E.; Blanco-Marigorta, A.M.; Elharidi, A.M.; Suárez-López, M.J. A novel humidification technique used in water desalination systems based on the humidification-dehumidification process: Experimentally and theoretically. Water 2020, 12, 2264. [Google Scholar] [CrossRef]
- Kavvadias, K.C.; Khamis, I. Sensitivity analysis and probabilistic assessment of seawater desalination costs fueled by nuclear and fossil fuel. Energy Policy 2014, 74, S24–S30. [Google Scholar] [CrossRef]
- Alkaisi, A.; Mossad, R.; Sharifian-Barforoush, A. A review of the water desalination systems integrated with renewable energy. Energy Procedia 2017, 110, 268–274. [Google Scholar] [CrossRef]
- Seawater Desalination Equipment Series for Ship Use. Available online: http://www.tjlanshizi.cn/chanpinyufuwu/haishuidanhuazhuangzhi/20200420/7.html (accessed on 20 April 2020).
- Products: Chemical Reagents for Seawater Desalination. Available online: http://www.zhonghaiscl.com/index.php?m=content&c=index&a=lists&catid=21 (accessed on 9 October 2018).
- Abushaban, A.M.J.; Mangal, M.N.; Salinas-Rodriguez, S.G.; Nnebuo, C.; Mondal, S.; Goueli, S.A.; Schippers, J.C.; Kennedy, M.D. Direct measurement of ATP in seawater and application of ATP to monitor bacterial growth potential in SWRO pre-treatment systems. Desalination Water Treat. Sci. Eng. 2017, 99, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Alshahri, A.H.; Dehwah, A.H.A.; Leiknes, T.; Missimer, T.M. Organic carbon movement through two SWRO facilities from source water to pretreatment to product with relevance to membrane biofouling. Desalination 2017, 407, 52–60. [Google Scholar] [CrossRef]
- Kim, J.; Park, K.; Hong, S. Application of two-stage reverse osmosis system for desalination of high-salinity and high-temperature seawater with improved stability and performance. Desalination 2020, 492, 114645. [Google Scholar] [CrossRef]
- Bick, A.; Oron, G. Post-treatment design of seawater reverse osmosis plants: Boron removal technology selection for potable water production and environmental control. Desalination 2005, 178, 233–246. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, C.; Zhou, C.; Liu, S.; Qiu, G. The Utility Model Relates to an Angle Fine-Tuning Device for Seawater Desalination High Pressure Bending Pipe and Its Working Method. Patent China CN111496033A, 2 February 2021. [Google Scholar]
- Song, D.; Liu, S.; Wang, S.; Chu, X.; Huang, Y.; Jiang, Z. High Pressure Pump Energy Recovery Machine with Adjustable Flow. Patent China CN107829896A, 23 March 2018. [Google Scholar]
- Liu, S.; Wang, S.; Wang, C.; Song, D.; Wang, H.; Huang, Y.; Qiu, G. The Invention Relates to a Rotating Guide Vane Module Regulated under Hydraulic Working Conditions and an Assembly Method Thereof in a Turbine Pump. Patent China CN110410361A, 5 November 2019. [Google Scholar]
- Goh, P.S.; Zulhairun, A.K.; Ismail, A.F.; Hilal, N. Contemporary antibiofouling modifications of reverse osmosis desalination membrane: A review. Desalination 2019, 468, 114072. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Feo-García, J. Estimation of maximum water recovery in RO desalination for different feedwater inorganic compositions. Desalination Water Treat. 2017, 70, 34–35. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Melián-Martel, N.; Mena, V. Fouling characterization of RO membranes after 11years of operation in a brackish water desalination plant. Desalination 2018, 430, 180–185. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures. Desalination 2019, 470, 114118. [Google Scholar] [CrossRef]
- Melián-Martel, N.; Sadhwani Alonso, J.J.; Ruiz-García, A. Combined silica and sodium alginate fouling of spiral-wound reverse osmosis membranes for seawater desalination. Desalination 2018, 439, 25–30. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Mitrouli, S.T.; Kostoglou, M. Scaling in reverse osmosis desalination plants: A perspective focusing on development of comprehensive simulation tools. Desalination 2020, 474, 114193. [Google Scholar] [CrossRef]
- Johnson, D.J.; Hilal, N. Can graphene and graphene oxide materials revolutionise desalination processes? Desalination 2021, 500, 114852. [Google Scholar] [CrossRef]
- Alihemati, Z.; Hashemifard, S.A.; Matsuura, T.; Ismail, A.F.; Hilal, N. Current status and challenges of fabricating thin film composite forward osmosis membrane: A comprehensive roadmap. Desalination 2020, 491, 114557. [Google Scholar] [CrossRef]
- Alnoor, O.; Laoui, T.; Ibrahim, A.; Kafiah, F.; Nadhreen, G.; Akhtar, S.; Khan, Z. Graphene oxide-based membranes for water purification applications: Effect of plasma treatment on the adhesion and stability of the synthesized membranes. Membranes 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Functional materials in desalination: A review. Desalination 2019, 468, 114077. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, P.; Jiang, C.; DuChanois, R.M.; Zhang, X.; Elimelech, M. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 2021, 4, 138–146. [Google Scholar] [CrossRef]
- Han, H.; Dai, R.; Wang, Z. Fabrication of high-performance thin-film composite nanofiltration membrane by dynamic calcium-carboxyl intra-bridging during post-treatment. Membranes 2020, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination 2019, 452, 159–195. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Hybrid technologies: The future of energy efficient desalination—A review. Desalination 2020, 495, 114659. [Google Scholar] [CrossRef]
- Kim, N.; Lee, J.; Kim, S.; Hong, S.P.; Lee, C.; Yoon, J.; Kim, C. Short review of multichannel membrane capacitive deionization: Principle, current status, and future prospect. Appl. Sci. 2020, 10, 683. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Q.; Gao, X.; Tian, X.; Wei, Y.; Cao, Z.; Guo, C.; Zhang, H.; Ma, Z.; Zhang, Y. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes. Front. Environ. Sci. Eng. 2019, 14, 6. [Google Scholar] [CrossRef]
- Elomari, H.; Achiou, B.; Ouammou, M.; Albizane, A.; Bennazha, J.; Alami Younssi, S.; Elamrani, I. Elaboration and characterization of flat membrane supports from Moroccan clays. Application for the treatment of wastewater. Desalination Water Treat. 2016, 57, 20298–20306. [Google Scholar] [CrossRef]
- Das, R.; Sondhi, K.; Majumdar, S.; Sarkar, S. Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation. J. Asian Ceram. Soc. 2016, 4, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Abo-Almaged, H.H.; Gaber, A.A. Synthesis and characterization of nano-hydroxyapatite membranes for water desalination. Mater. Today Commun. 2017, 13, 186–191. [Google Scholar] [CrossRef]
- Zhu, B.; Hong, Z.; Milne, N.; Doherty, C.M.; Zou, L.; Lin, Y.S.; Hill, A.J.; Gu, X.; Duke, M. Desalination of seawater ion complexes by MFI-type zeolite membranes: Temperature and long term stability. J. Membr. Sci. 2014, 453, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Alftessi, S.A.; Othman, M.H.D.; Adam, M.R.; Farag, T.M.; Ismail, A.F.; Rahman, M.A.; Jaafar, J.; Habib, M.A.; Raji, Y.O.; Hubadillah, S.K. Novel silica sand hollow fibre ceramic membrane for oily wastewater treatment. J. Environ. Chem. Eng. 2021, 9, 104975. [Google Scholar] [CrossRef]
- Mohammad, A.F.; El-Naas, M.H.; Al-Marzouqi, A.H.; Suleiman, M.I.; Al Musharfy, M. Optimization of magnesium recovery from reject brine for reuse in desalination post-treatment. J. Water Process. Eng. 2019, 31, 100810. [Google Scholar] [CrossRef]
- Boubakri, A.; Bouguecha, S.A.-T.; Dhaouadi, I.; Hafiane, A. Effect of operating parameters on boron removal from seawater using membrane distillation process. Desalination 2015, 373, 86–93. [Google Scholar] [CrossRef]
- Güler, E.; Kaya, C.; Kabay, N.; Arda, M. Boron removal from seawater: State-of-the-art review. Desalination 2015, 356, 85–93. [Google Scholar] [CrossRef]
- Alpatova, A.; Alsaadi, A.; Ghaffour, N. Boron evaporation in thermally-driven seawater desalination: Effect of temperature and operating conditions. J. Hazard. Mater. 2018, 351, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Rahmawati, K.; Ghaffour, N.; Aubry, C.; Amy, G.L. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes. J. Membr. Sci. 2012, 423–424, 522–529. [Google Scholar] [CrossRef]
- Ban, S.-H.; Im, S.-J.; Cho, J.; Jang, A. Comparative performance of FO-RO hybrid and two-pass SWRO desalination processes: Boron removal. Desalination 2019, 471, 114114. [Google Scholar] [CrossRef]
- Xu, G.-R.; An, X.-C.; Das, R.; Xu, K.; Xing, Y.-L.; Hu, Y.-X. Application of electrospun nanofibrous amphiphobic membrane using low-cost poly (ethylene terephthalate) for robust membrane distillation. J. Water Process Eng. 2020, 36, 101351. [Google Scholar] [CrossRef]
- Xing, Y.-L.; Qi, C.-H.; Feng, H.-J.; Lv, Q.-C.; Xu, G.-R.; Lv, H.-Q.; Wang, X. Performance study of a pilot-scale multi-effect vacuum membrane distillation desalination plant. Desalination 2017, 403, 199–207. [Google Scholar] [CrossRef]
- Xu, K.; Liu, Y.; An, Z.; Xu, G.; Gadgil, A.J.; Ruan, G. The polymeric conformational effect on capacitive deionization performance of graphene oxide/polypyrrole composite electrode. Desalination 2020, 486, 114407. [Google Scholar] [CrossRef]
- Ghaffour, N.; Soukane, S.; Lee, J.G.; Kim, Y.; Alpatova, A. Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review. Appl. Energy 2019, 254, 113698. [Google Scholar] [CrossRef]
- Giagnorio, M.; Ricceri, F.; Tagliabue, M.; Zaninetta, L.; Tiraferri, A. Hybrid forward osmosis-nanofiltration for wastewater reuse: System design. Membranes 2019, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, B.G.; Kim, D.I.; Hong, S. Fouling evaluation and mechanisms in a FO-RO hybrid process for direct potable reuse. J. Membr. Sci. 2016, 520, 89–98. [Google Scholar] [CrossRef]
- Xie, M.; Nghiem, L.D.; Price, W.E.; Elimelech, M. A forward osmosis-membrane distillation hybrid process for direct sewer mining: System performance and limitations. Environ. Sci. Technol. 2013, 47, 13486–13493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaviska, F.; Chun, Y.; Heran, M.; Zou, L. Using FO as pre-treatment of RO for high scaling potential brackish water: Energy and performance optimisation. J. Membr. Sci. 2015, 492, 430–438. [Google Scholar] [CrossRef]
- Kim, J.; Park, M.; Shon, H.K.; Kim, J.H. Performance analysis of reverse osmosis, membrane distillation, and pressure-retarded osmosis hybrid processes. Desalination 2016, 380, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Lee, C.; Kim, S.W.; Kim, C.S.; Kim, I.S. Performance evaluation and fouling propensity of forward osmosis (FO) membrane for reuse of spent dialysate. Membranes 2020, 10, 438. [Google Scholar] [CrossRef]
- Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. Desalination 2020, 485, 114455. [Google Scholar] [CrossRef]
- Ibrar, I.; Naji, O.; Sharif, A.; Malekizadeh, A.; Alhawari, A.; Alanezi, A.A.; Altaee, A. A review of fouling mechanisms, control strategies and real-time fouling monitoring techniques in forward osmosis. Water 2019, 11, 695. [Google Scholar] [CrossRef] [Green Version]
- Suzaimi, N.D.; Goh, P.S.; Ismail, A.F.; Mamah, S.C.; Malek, N.A.; Lim, J.W.; Wong, K.C.; Hilal, N. Strategies in forward osmosis membrane substrate fabrication and modification: A review. Membranes 2020, 10, 332. [Google Scholar] [CrossRef] [PubMed]
Classification | Product Brands/Company Names | Location |
---|---|---|
Membranes | OriginWater | Beijing |
Vontron | Guiyang | |
Toray Bluestar | Beijing | |
Koch | Beijing | |
Zhaojin Motian | Yantai | |
Motech | Tianjin | |
Scinor | Beijing | |
Equipment | Shandong Shuanglun | Weihai |
Nanfang Pump Industry | Hangzhou | |
Voitu | Shanghai | |
Kaiquan | Shanghai | |
Sulzer (Dalian) | Dalian | |
KSB(Shanghai) | Shanghai | |
EPC company | Beijing OriginWater Technology Co., Ltd. | Beijing |
Qingdao Water Group Co., Ltd. | Qingdao | |
Shanghai Electric Group Co., Ltd. | Shanghai | |
ISDMU | Tianjin | |
Hangzhou Water Treatment Technology Development Center Co., Ltd. | Hangzhou | |
POWCHINA | Beijing |
Model | Water Production Capacity (m3/d) | Salt Rejection (%) | Recovery Ratio (%) | Operational Pressure (MPa) | Equipment Size L × W × H/cm |
---|---|---|---|---|---|
CH-001 a | 1 | 99.2 | 12 | 5.5 | 100 × 60 × 150 |
CH-005 | 5 | 99.2 | 24 | 5.5 | 100 × 60 × 150 |
CH-010 | 10 | 99.5 | 30 | 5.5 | 100 × 60 × 160 |
CH-020 | 20 | 99.5 | 30 | 5.5 | 150 × 75 × 180 |
CH-050 | 50 | 99.5 | 40 | 5.5 | 190 × 110 × 180 |
CH-100 | 100 | 99.5 | 40 | 5.5 | 220 × 130 × 180 |
CH-200 | 200 | 99.5 | 40 | 5.5 | 400 × 150 × 180 |
DH-005 b | 5 | 99.5 | 24 | 5.5 | 100 × 60 × 150 |
DH-010 | 10 | 99.5 | 30 | 5.5 | 100 × 60 × 160 |
DH-020 | 20 | 99.5 | 30 | 5.5 | 100 × 60 × 160 |
DH-050 | 50 | 99.5 | 40 | 5.5 | 120 × 60 × 170 |
DH-100 | 100 | 99.5 | 40 | 5.5 | 120 × 60 × 170 |
DH-200 | 200 | 99.5 | 40 | 5.5 | 150 × 60 × 180 |
DH-500 | 500 | 99.5 | 40 | 5.5 | 200 × 60 × 180 |
DHP-005 c | 5 | 99.5 | 30 | 5.5 | 600 × 280 |
DHP-010 | 10 | 99.5 | 30 | 5.5 | 1000 × 300 |
DHP-020 | 20 | 99.5 | 30 | 5.5 | 1300 × 300 |
DHP-050 | 50 | 99.5 | 40 | 5.5 | 2000 × 400 |
DHP-100 | 100 | 99.5 | 40 | 5.5 | 2500 × 500 |
Company | Project Name | Area | Feed Solution | Capacity |
---|---|---|---|---|
Jiangsu Jindong Salt Refining Co., Ltd. | Salt refining project | Process dissociation | Saline water | 800 m3/h |
Wudi Xinyue Chemical Co., Ltd. | Ionic membrane caustic soda one pass salt refining project | Process dissociation | Saline water | 360 m3/h |
Shandong Haobang Chemical Co., Ltd. | Ionic membrane caustic soda one pass salt refining project | Process dissociation | Saline water | 360 m3/h |
Hulun Buir Northeast Bufeng Biotechnology Co., Ltd. | Continuous separation of fermented broth | Process dissociation | Fermented broth | 1200 m3/d |
Xinjiang Bufeng Biotechnology Co., Ltd. | Continuous separation of fermented broth | Process dissociation | Fermented broth | Valine, 900 m3/d Isoleucine, 800 m3/d |
Yili Chuanning Biotechnology Co., Ltd. | Continuous separation of fermented broth | Process dissociation | Fermented broth | 400 m3/d |
North China Pharmaceutical Hebei Huamin Company, Ltd. | The continuous filtration system of fermented broth | Process dissociation | Fermented broth | 300 m3/d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, G.; Wang, M.; An, Z.; Xu, G.; Ge, Y.; Zhao, H. Progress and Perspectives of Desalination in China. Membranes 2021, 11, 206. https://doi.org/10.3390/membranes11030206
Ruan G, Wang M, An Z, Xu G, Ge Y, Zhao H. Progress and Perspectives of Desalination in China. Membranes. 2021; 11(3):206. https://doi.org/10.3390/membranes11030206
Chicago/Turabian StyleRuan, Guoling, Min Wang, Zihan An, Guorong Xu, Yunhong Ge, and Heli Zhao. 2021. "Progress and Perspectives of Desalination in China" Membranes 11, no. 3: 206. https://doi.org/10.3390/membranes11030206
APA StyleRuan, G., Wang, M., An, Z., Xu, G., Ge, Y., & Zhao, H. (2021). Progress and Perspectives of Desalination in China. Membranes, 11(3), 206. https://doi.org/10.3390/membranes11030206