Oxygen Enrichment Membranes for Kuwait Power Plants: A Case Study
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Fuel Savings
3.2. Carbon Dioxide Emissions
3.3. Economic Assessment
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Labrecque, E. Climate Change; Cherry Lake Publishing: Ann Arbour, MI, USA, 2017. [Google Scholar]
- Al-Mutairi, A.; Smallbone, A.; Al-Salem, S.; Roskilly, A. The first carbon atlas of the state of Kuwait. Energy 2017, 133, 317–326. [Google Scholar] [CrossRef]
- Darwish, M.; Abdulrahim, H.; Amer, A. On better utilization of gas turbines in Kuwait. Energy 2008, 33, 571–588. [Google Scholar] [CrossRef]
- Baukal, C. Oxygen-Enhanced Combustion, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Acton, Q. Issues in Energy Conversion, Transmission, and Systems; Scholarly Editions: Atlanta, GA, USA, 2013. [Google Scholar]
- Lin, H.; Zhou, M.; Ly, J.; Vu, J.; Wijmans, J.; Merkel, T.; Jin, J.; Haldeman, A.; Wagener, E.; Rue, D. Membrane-based oxygen-enriched combustion. Ind. Eng. Chem. Res. 2013, 52, 10820–10834. [Google Scholar] [CrossRef]
- Tanuma, T. Advances in Steam Turbines for Modern Power Plants; Woodhead Publishing: Sawston, Cambridge, UK, 2017; pp. 11–40. [Google Scholar] [CrossRef]
- Gunardson, H. Industrial Gases in Petrochemical Processing: Chemical Industries; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Pan, M.; Omar, H.; Rohani, S. Application of nanosize zeolite molecular sieves for medical oxygen concentration. Nanomaterials 2017, 7, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokroo, E.; Farsani, D.; Meymandi, H.; Yadollahi, N. Comparative study of zeolite 5A and zeolite 13X in air separation by pressure swing adsorption. Korean J. Chem. Eng. 2016, 33, 1391–1401. [Google Scholar] [CrossRef]
- Wijmans, J.; Baker, R. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Compressed Gas Association. Handbook of Compressed Gases; Springer: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- Gollan, A.; Kleper, M.H. The economics of oxygen enriched air production via membranes. Proc. Sixth Annu. Ind. Energy Technol. Conf. 1984, 1, 298–306. [Google Scholar]
- Di Barba, P.; Fattorusso, L.; Versaci, M. Electrostatic field in terms of geometric curvature in membrane MEMS devices. CAIM 2017, 8, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Farsad, K.; Camilli, P. Mechanisms of membrane deformation. Curr. Opin. Cell Biol. 2003, 15, 372–381. [Google Scholar] [CrossRef]
- Lee, C.; Jang, J.; Tin, N.; Kim, S.; Tang, C.; Kim, I. Effect of spacer configuration on the characteristics of FO membranes: Alteration of permeation characteristics by membrane deformation and concentration polarization. Environ. Sci. Technol. 2020, 54, 6385–6395. [Google Scholar] [CrossRef] [PubMed]
- George, G.; Bhoria, N.; AlHallaq, S.; Abdala, A.; Mittal, V. Polymer membranes for acid gas removal from natural gas. Sep. Purif. Technol. 2016, 158, 333–356. [Google Scholar] [CrossRef]
- Morosuk, T.; Sultan, M. Low-Temperature Technologies; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Kohl, A.; Nielsen, R. Gas Purification, 5th ed.; Elsevier Science: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Petheram, L. Acid Rain; Bridgestone Books: Waterbury Village Historic District, VT, USA, 2002. [Google Scholar]
- Davis, R. Simple gas permeation and pervaporation membrane unit operation models for process simulators. Chem. Eng. Technol. 2002, 25, 717–722. [Google Scholar] [CrossRef]
- Huynh, C.; Kong, S.-C. Performance characteristics of a pilot-scale biomass gasifier using oxygen-enriched air and steam. Fuel 2013, 103, 987–996. [Google Scholar] [CrossRef]
- Merkel, T.; Lin, H.; Wei, X.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
- Tudor, T.; Dutra, C. The Routledge Handbook of Waste, Resources and the Circular Economy, 1st ed.; Taylor & Francis: Abingdon, UK, 2020. [Google Scholar]
- Subraveti, S.; Roussanaly, S.; Anantharaman, R.; Riboldi, L.; Rajendran, A. Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas. Sep. Purif. Technol. 2021, 256, 117832. [Google Scholar] [CrossRef]
- Thomas, D.; Benson, S. Carbon Dioxide Capture for Storage in Deep Geologic Formations: Results from the CO2 Capture Project; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
Technology | Capital Cost (USD/tons O2) | Operating Cost (USD/tons O2) |
---|---|---|
Cryogenic Distillation | 25,000–525,000 | 39 |
Pressure Swing Adsorption (PSA) | 13,000–70,000 | 26 |
Membrane | 11,000–27,000 | 23 |
Component | Mole Fraction (%) |
---|---|
Methane (CH4) | 87 |
Ethane (C2H6) | 9 |
Propane (C3H8) | 2 |
Butane (C4H10) | 1 |
Nitrogen (N2) | 1 |
Property | Condition |
---|---|
Water | |
Inlet water temperature | 34 °C |
Steam temperature | 450 °C |
Steam pressure | 140 bar |
Air | |
Air pressure | 1 bar |
Air temperature | 25 °C |
Oxygen concentration | 21–100 mol% |
Natural Gas | |
Natural gas pressure | 1 bar |
Natural gas temperature | 25 °C |
Furnace | |
Flue gas temperature | 450 °C |
Flue gas excess oxygen | 2 mol% |
Turbine | |
Turbine Power | 5300 MW |
Outlet pressure | 0.05 bar |
Property | Condition |
---|---|
Feed pressure | 4 bar |
Feed temperature | 25 °C |
Retentate pressure | 4 bar |
Retentate temperature | 25 °C |
Permeate pressure | 1 bar |
Oxygen permeance | 1200 GPU * |
Nitrogen permeance | 400 GPU * |
Parameter | Value |
---|---|
Capital Cost 1 | |
Membrane skid | USD 50 per m2 |
Membrane area | 3,500,000 m2 |
Membrane cost | USD 175,000,000 |
Compressor price | USD 200 per kW |
Compressor power | 2,228,000 kW |
Compressor cost | USD 445,600,000 |
Total capital cost | USD 620,600,000 |
Annual Operating Cost 2 | |
Electricity Bill | USD 0.0015 per kWh |
Maintenance | 5% capital cost |
Total Operating Cost | USD 60,305,920 |
Net Savings (First Year) | |
Natural gas price | USD 2.9 per MMBTU * |
Annual fuel saving | 39,647,894 MMBTU |
Saving | USD 114,978,893 |
Net savings | USD—565,927,027 |
Parameter | Target Value | Current Value |
---|---|---|
Scenario 1 (natural gas price) | ||
Natural gas price | USD 6.74 per MMBTU | USD 2.9 per MMBTU |
Compressor cost | - | USD 200 per KW |
Membrane skid cost | - | USD 50 per m2 |
Scenario 2 (compressor cost) | ||
Natural gas price | - | USD 2.9 per MMBTU |
Compressor cost | USD 52 per kW | USD 200 per kW |
Membrane skid cost | - | USD 50 per m2 |
Scenario 3 (membrane skid cost) | ||
Natural gas price | - | USD 2.9 per MMBTU |
Compressor cost | - | USD 200 per kW |
Membrane skid cost | USD 10 (8 years payback) | USD 50 per m2 |
Scenario 4 (compressor and membrane costs) | ||
Natural gas price | - | USD 2.9 per MMBTU |
Compressor cost | USD 87.6 per kW | USD 200 per kW |
Membrane skid cost | USD 10 per m2 | USD 50 per m2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqaheem, Y.; Alswaileh, F. Oxygen Enrichment Membranes for Kuwait Power Plants: A Case Study. Membranes 2021, 11, 211. https://doi.org/10.3390/membranes11030211
Alqaheem Y, Alswaileh F. Oxygen Enrichment Membranes for Kuwait Power Plants: A Case Study. Membranes. 2021; 11(3):211. https://doi.org/10.3390/membranes11030211
Chicago/Turabian StyleAlqaheem, Yousef, and Fajer Alswaileh. 2021. "Oxygen Enrichment Membranes for Kuwait Power Plants: A Case Study" Membranes 11, no. 3: 211. https://doi.org/10.3390/membranes11030211
APA StyleAlqaheem, Y., & Alswaileh, F. (2021). Oxygen Enrichment Membranes for Kuwait Power Plants: A Case Study. Membranes, 11(3), 211. https://doi.org/10.3390/membranes11030211