A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Fabrication
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Zhou, M.-Y.; Lin, C.-E.; Zhu, B.-K. Progress in polymeric separators for lithium ion batteries. RSC Adv. 2015, 5, 89848–89860. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mahdavi, H. Recent Development of Polyolefin-Based Microporous Separators for Li-Ion Batteries: A Review. Chem Rec 2020, 20, 570–595. [Google Scholar] [CrossRef]
- Zhang, S.S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364. [Google Scholar] [CrossRef]
- Song, Y.; Sheng, L.; Wang, L.; Xu, H.; He, X. From separator to membrane: Separators can function more in lithium ion batteries. Electrochem. Commun. 2021, 124, 106948. [Google Scholar] [CrossRef]
- Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886. [Google Scholar] [CrossRef]
- Li, L.; Wang, F.; Li, J.; Yang, X.; You, J. Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery. Int. J. Hydrogen Energy 2017, 42, 12087–12093. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S.H.; Yang, X.; Sui, G. Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 2019, 37, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xiang, H.; Wang, L.; Xia, R.; Nie, S.; Chen, C.; Wang, H. A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J. Membr. Sci. 2018, 553, 10–16. [Google Scholar] [CrossRef]
- Li, D.; Shi, D.; Feng, K.; Li, X.; Zhang, H. Poly (ether ether ketone)(PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. J. Membr. Sci. 2017, 530, 125–131. [Google Scholar] [CrossRef]
- Choi, J.-A.; Kim, S.H.; Kim, D.-W. Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 2010, 195, 6192–6196. [Google Scholar] [CrossRef]
- Hou, J.; Jang, W.; Kim, S.; Kim, J.-H.; Byun, H. Rapid formation of polyimide nanofiber membranes via hot-press treatment and their performance as Li-ion battery separators. RSC Adv. 2018, 8, 14958–14966. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Xu, Y.; Chen, D.; Xie, Y.; Chen, L.; Que, M.; Hou, Y. Deformable and flexible electrospun nanofiber-supported cross-linked gel polymer electrolyte membranes for high safety lithium-ion batteries. RSC Adv. 2017, 7, 22728–22734. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ma, X.-T.; Shi, J.-L.; Yao, Z.-K.; Zhu, B.-K.; Zhu, L.-P. Preparation and properties of poly (ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries. Electrochim. Acta 2011, 56, 2641–2647. [Google Scholar] [CrossRef]
- Li, Y.-J.; Fan, C.-Y.; Zhang, J.-P.; Wu, X.-L. A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Dalton Trans. 2018, 47, 14932–14937. [Google Scholar] [CrossRef]
- Gu, Q.-Q.; Xue, H.-J.; Li, Z.-W.; Song, J.-C.; Sun, Z.-Y. High-performance polyethylene separators for lithium-ion batteries modified by phenolic resin. J. Power Sources 2021, 483, 229155. [Google Scholar] [CrossRef]
- Jin, L.; Ahmed, F.; Ryu, T.; Yoon, S.; Zhang, W.; Lee, Y.; Kim, D.; Jang, H.; Kim, W. Highly conductive and flexible gel polymer electrolyte with bis (fluorosulfonyl) imide lithium salt via UV curing for Li-ion batteries. Membranes 2019, 9, 139. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.; Singh, R.K. Energy Storage Battery Systems-Fundamentals and Applications; IntechOpen: London, UK, 2020; pp. 1–19. [Google Scholar]
- Yang, M.; Li, W.; Wang, G.; Zhang, J. Preparation and characterization of a novel microporous PE membrane supporting composite gel polymer electrolyte. Solid State Ionics 2005, 176, 2829–2834. [Google Scholar] [CrossRef]
- Sohn, J.-Y.; Im, J.-S.; Shin, J.; Nho, Y.-C. PVDF-HFP/PMMA-coated PE separator for lithium ion battery. J. Solid State Electrochem. 2012, 16, 551–556. [Google Scholar] [CrossRef]
- Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Clough, R. High-energy radiation and polymers: A review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. Sect. B 2001, 185, 8–33. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Song, J.-M.; Sohn, J.-Y.; Nho, Y.-C.; Shin, J.-H. Evaluation of the Effect of Solvent on the Preparation of PVBC-g-ETFE Film by a Pre-irradiation Method. Polymer 2011, 35, 610–614. [Google Scholar]
- Deng, B.; Li, J.; Hou, Z.; Yao, S.; Shi, L.; Liang, G.; Sheng, K. Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence. Radiat. Phys. Chem. 2008, 77, 898–906. [Google Scholar] [CrossRef]
- Nasef, M.; Zubir, N.; Ismail, A.; Khayet, M.; Dahlan, K.; Saidi, H.; Rohani, R.; Ngah, T.; Sulaiman, N. PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: Preparation and transport characteristics of protons and methanol. J. Membr. Sci. 2006, 268, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wei, J.; Shan, F.; Yang, J.; Wang, X. PVDF/PMMA brushes membrane for lithium-ion rechargeable batteries prepared via preirradiation grafting technique. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 751–758. [Google Scholar] [CrossRef]
- Gwon, S.-J.; Choi, J.-H.; Sohn, J.-Y.; An, S.-J.; Ihm, Y.-E.; Nho, Y.-C. Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries. Nucl. Instrum. Methods Phys. Res. Sect. B 2008, 266, 3387–3391. [Google Scholar] [CrossRef]
- Jung, M.-J.; Park, M.-S.; Lee, Y.-S. Effects of e-beam irradiation on the chemical, physical, and electrochemical properties of activated carbons for electric double-layer capacitors. J. Nanomater. 2015, 2015, 240264. [Google Scholar] [CrossRef] [Green Version]
- Puhova, I.V.; Rubtsov, K.V.; Kurzina, I.; Kazakov, A.V.; Medovnik, A.V. Modification of polymer materials by electron beam treatment. Key Eng. Mater. 2015, 670, 118–125. [Google Scholar] [CrossRef]
- Sharif, J.; Mohamad, S.F.; Othman, N.A.F.; Bakaruddin, N.A.; Osman, H.N.; Güven, O. Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre-irradiation technique. Radiat. Phys. Chem. 2013, 91, 125–131. [Google Scholar] [CrossRef]
- Park, I.K.; Cha, W.J.; Lee, C.H. Saline water electrolysis membranes prepared via the simultaneous irradiation of electron-beam. ECS Trans. 2020, 98, 665–672. [Google Scholar] [CrossRef]
- Cha, W.J.; Lee, C.H. Sulfonated poly (arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application. Membr. J. 2016, 26, 458–462. [Google Scholar] [CrossRef]
- Lamberti, M.; Escher, F. Aluminium Foil as a Food Packaging Material in Comparison with Other Materials. Food Rev. Int. 2007, 23, 407–433. [Google Scholar] [CrossRef]
- Chan, K.W.; Cook, K.D. Mass spectrometric study of interactions between poly (ethylene glycols) and alkali metals in solution. Macromolecules 1983, 16, 1736–1740. [Google Scholar] [CrossRef]
- Izatt, R.M.; Bradshaw, J.S.; Nielsen, S.A.; Lamb, J.D.; Christensen, J.J.; Sen, D. Thermodynamic and kinetic data for cation-macrocycle interaction. Chem. Rev 1985, 85, 271–339. [Google Scholar] [CrossRef]
- Izatt, R.M.; Pawlak, K.; Bradshaw, J.S.; Bruening, R.L. Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem. Rev. 1991, 91, 1721–2085. [Google Scholar] [CrossRef]
- Lee, C.H.; VanHouten, D.; Lane, O.; McGrath, J.E.; Hou, J.; Madsen, L.A.; Spano, J.; Wi, S.; Cook, J.; Xie, W. Disulfonated poly (arylene ether sulfone) random copolymer blends tuned for rapid water permeation via cation complexation with poly (ethylene glycol) oligomers. Chem. Mater. 2011, 23, 1039–1049. [Google Scholar] [CrossRef]
- Okada, T. Efficient evaluation of poly (oxyethylene) complex formation with alkali-metal cations. Macromolecules 1990, 23, 4216–4219. [Google Scholar] [CrossRef]
- Li, W.; Pang, Y.; Liu, J.; Liu, G.; Wang, Y.; Xia, Y. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 2017, 7, 23494–23501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Cao, J.; Shang, Y.; Wang, L.; He, X.; Li, J.; Zhao, P.; Wang, Y. Nanocomposite polymer membrane derived from nano TiO 2-PMMA and glass fiber nonwoven: High thermal endurance and cycle stability in lithium ion battery applications. J. Mater. Chem. A 2015, 3, 17697–17703. [Google Scholar] [CrossRef]
- Li, Y.; Dillard, D.A.; Case, S.W.; Ellis, M.W.; Lai, Y.-H.; Gittleman, C.S.; Miller, D.P. Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters. J. Power Sources 2009, 194, 873–879. [Google Scholar] [CrossRef]
- Dillard, D.A.; Li, Y.; Grohs, J.R.; Case, S.W.; Ellis, M.W.; Lai, Y.-H.; Budinski, M.K.; Gittleman, C.S. On the use of pressure-loaded blister tests to characterize the strength and durability of proton exchange membranes. J. Fuel Cell Sci. Technol. 2009, 6, 031014. [Google Scholar] [CrossRef]
- Li, G.H.; Lee, C.H.; Lee, Y.M.; Cho, C.G. Preparation of poly (vinyl phosphate-b-styrene) copolymers and its blend with PPO as proton exchange membrane for DMFC applications. Solid State Ionics 2006, 177, 1083–1090. [Google Scholar] [CrossRef]
- Ahn, J.H.; You, T.-S.; Lee, S.-M.; Esken, D.; Dehe, D.; Huang, Y.-C.; Kim, D.-W. Hybrid separator containing reactive, nanostructured alumina promoting in-situ gel electrolyte formation for lithium-ion batteries with good cycling stability and enhanced safety. J. Power Sources 2020, 472, 228519. [Google Scholar] [CrossRef]
- Rafiz, K.; Lin, J.Y. Safe Li-ion batteries enabled by completely inorganic electrode-coated silicalite separators. Sustainable Energy Fuels 2020, 4, 5783–5794. [Google Scholar] [CrossRef]
- Hwang, S.S.; Cho, C.G.; Kim, H. Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether. Electrochem. Commun. 2010, 12, 916–919. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Park, I.K.; Cha, W.J.; Lee, C.H. A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam. Membranes 2021, 11, 219. https://doi.org/10.3390/membranes11030219
Hou J, Park IK, Cha WJ, Lee CH. A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam. Membranes. 2021; 11(3):219. https://doi.org/10.3390/membranes11030219
Chicago/Turabian StyleHou, Jian, In Kee Park, Woo Ju Cha, and Chang Hyun Lee. 2021. "A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam" Membranes 11, no. 3: 219. https://doi.org/10.3390/membranes11030219
APA StyleHou, J., Park, I. K., Cha, W. J., & Lee, C. H. (2021). A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam. Membranes, 11(3), 219. https://doi.org/10.3390/membranes11030219