Coupling of Immobilized Photosynthetic Bacteria with a Graphene Oxides/PSF Composite Membrane for Textile Wastewater Treatment: Biodegradation Performance and Membrane Anti-Fouling Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of GO/PSF Composite Membrane
2.3. Immobilizing of Photosynthetic Bacteria into Hydrogel
2.4. Characterizations
2.5. Experimental Setup
2.6. Measurement of PSB Biomass Concentration
2.7. Calculation of Membrane Permeability and Filtration Resistance
2.8. Analytical Methods
3. Results and Discussion
3.1. Characterization of GO Modified Composite Membrane
3.2. Hydrophilicity and Filtration Performance of GO Modified Membrane
3.3. Preparation and Characterization of Immobilized Particles
3.4. Performance of the Integrated System
3.5. Comparison of Membrane Permeability on Different Integrated Systems
3.6. Characteristics of Sludge Flocs in Integrated System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Vikrant, K.; Giri, B.S.; Raza, N.; Roy, K.; Kim, K.H.; Rai, B.N.; Singh, R.S. Recent advancements in bioremediation of dye: Current status and challenges. Bioresour. Technol. 2018, 253, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Cañizares, P.; Martínez, F.; Jiménez, C.; Lobato, J.; Rodrigo, M.A. Coagulation and electrocoagulation of wastes polluted with dyes. Environ. Sci. Technol. 2006, 40, 6418–6424. [Google Scholar] [CrossRef]
- Xu, X.; Gao, B.; Yue, Q.; Zhong, Q.; Li, Q. Preparation of new types of anion exchange resins from agricultural by-products and their utilization in the removal of various toxic anions from solutions. Chem. Eng. J. 2011, 167, 104–111. [Google Scholar] [CrossRef]
- Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016, 306, 1116–1137. [Google Scholar] [CrossRef]
- Saber-Samandari, S.; Joneidi-Yekta, H.; Mohseni, M. Adsorption of anionic and cationic dyes from aqueous solution using gelatin-based magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube. Chem. Eng. J. 2017, 308, 1133–1144. [Google Scholar] [CrossRef]
- Santos, S.C.R.; Boaventura, R.A.R. Treatment of a simulated textile wastewater in a sequencing batch reactor: (SBR) with addition of a low-cost adsorbent. J. Hazard. Mater. 2015, 291, 74–82. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, G.; Meng, Q.; Zhang, H.; Xu, L.; Lv, B. Enhanced MBR by internal micro-electrolysis for degradation of anthraquinone dye wastewater. Chem. Eng. J. 2012, 210, 575–584. [Google Scholar] [CrossRef]
- Du, X.; Shi, Y.; Jegatheesan, V.; Haq, I.U. A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. Membranes 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Qin, L.; Meng, Q.; Fan, Z.; Wu, D. Aerobic SMBR/reverse osmosis system enhanced by Fenton oxidation for advanced treatment of old municipal landfill leachate. Bioresour. Technol. 2013, 142, 261–268. [Google Scholar] [CrossRef]
- Zieli’nska, M.; Bernat, K.; Mikucka, W. Membrane Bioreactor Technology: The Effect of Membrane Filtration on Biogas Potential of the Excess Sludge. Membranes 2020, 10, 397. [Google Scholar] [CrossRef]
- Supaka, N.; Juntongjin, K.; Damronglerd, S.; Delia, M.; Strehaiano, P. Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. Chem. Eng. J. 2004, 99, 169–176. [Google Scholar] [CrossRef]
- Libra, J.A.; Borchert, M.; Vigelahn, L.; Storm, T. Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites. Chemosphere 2004, 56, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Chen, L.; Zhang, S.; Cao, C.; Zhang, S. Correlating membrane fouling with sludge characteristics in membrane bioreactors: An especial interest in EPS and sludge morphology analysis. Bioresour. Technol. 2011, 102, 8820–8827. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Zhang, S.; Oh, Y.; Zhou, Z.; Shin, H.; Chae, S.R. Fouling in membrane bioreactors: An updated review. Water Res. 2017, 114, 151–180. [Google Scholar] [CrossRef]
- Gu, Y.L.; Huang, J.H.; Zeng, G.M.; Shi, Y.H.; Hu, Y.; Tang, B.; Zhou, J.X.; Xu, W.H.; Shi, L.X. Quorum quenching activity of indigenous quorum quenching bacteria and its potential application in mitigation of membrane biofouling. J. Chem. Technol. Biotechnol. 2018, 93, 1394–1400. [Google Scholar] [CrossRef]
- Pradhan, M.; Vigneswaran, S.; Kandasamy, J. Assessment of fouling behavior in submerged microfiltration system coupled with flocculation. J. Ind. Eng. Chem. 2015, 21, 254–260. [Google Scholar] [CrossRef]
- Qin, L.; Liu, Q.; Meng, Q.; Fan, Z.; He, J.; Liu, T.; Shen, C.; Zhang, G. Anoxic oscillating MBR for photosynthetic bacteria harvesting and high salinity wastewater treatment. Bioresour. Technol. 2017, 22, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Chitapornpan, S.; Chiemchaisri, C.; Chiemchaisri, W.; Honda, R.; Yamamoto, K. Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater. Bioresour. Technol. 2013, 141, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Kuo, F.; Chien, Y.H.; Chen, C. Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresour. Technol. 2012, 113, 315–322. [Google Scholar] [CrossRef]
- Munoz, R.; Guieysse, B. Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef]
- Qin, L.; Fan, Z.; Xu, L.; Zhang, G.; Wang, G.; Wu, D.; Long, X.; Meng, Q. A submerged membrane bioreactor with pendulum type oscillation: (PTO) for oily wastewater treatment: Membrane permeability and fouling control. Bioresour. Technol. 2015, 183, 33–41. [Google Scholar] [CrossRef]
- Adessi, A.; Philippis, R.D. Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: A review. Int. J. Hydrog. Energy 2014, 25, 3127–3141. [Google Scholar] [CrossRef]
- Castillo, I.; Hernandez, P.; Lafuente, A.; Rodriguez-Llorente, I.D.; Caviedes, M.A.; Pajuelo, E. Self-bioremediation of cork-processing wastewaters by (chloro)phenol-degrading bacteria immobilized onto residual cork particles. Water Res. 2012, 46, 1723–1734. [Google Scholar] [CrossRef]
- Ng, K.K.; Shi, X.; Ng, H.Y. Evaluation of system performance and microbial communities of a bioaugmented anaerobic mem brane bioreactor treating pharmaceutical wastewater. Water Res. 2015, 81, 311–324. [Google Scholar] [CrossRef]
- Bashan, L.E.; Bashan, Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 2010, 101, 1611–1627. [Google Scholar] [CrossRef] [PubMed]
- Yeon, K.M.; Lee, C.H.; Kim, J. Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching. Environ. Sci. Technol. 2009, 43, 7403–7409. [Google Scholar] [CrossRef] [PubMed]
- Smidsrod, O.; Skjak-Braek, G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990, 8, 71–78. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Yao, L.; Wang, Z.; Zhang, G. Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. J. Membr. Sci. 2013, 436, 163–173. [Google Scholar] [CrossRef]
- Hu, M.; Zheng, S.X.; Mi, B.X. Organic fouling of graphene oxide membranes and its implications for membrane fouling control in engineered osmosis. Environ. Sci. Technol. 2016, 50, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Lv, J.; Xu, X.; Zhang, G.; Yang, Y.; Yang, F. Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment. J. Colloid Interf. Sci. 2017, 505, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Xu, X.; Chen, J.; Wang, G.; Yang, F. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 2014, 340, 59–66. [Google Scholar] [CrossRef]
- Zhu, Y.; James, D.K.; Tour, J.M. New routes to graphene, graphene oxide and their related applications. Adv. Mater. 2012, 24, 4924–4955. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, K.B.; Kim, J.E.; Won, Y.J.; Yeon, K.M.; Lee, C.H.D.; Lim, J. Macroencapsulation of quorum quenching bacteria by pol ymeric membrane layer and its application to MBR for biofouling control. J. Membr. Sci. 2015, 473, 109. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Zhang, G.; Zhou, M.; Xu, Z.; Jiang, C.; Shen, C.; Meng, Q. Guanidyl-functionalized graphene/polysulfone mixed matrix ultrafil tration membrane with superior permselective, antifouling and antibacterial properties for water treatment. J. Colloid Interf. Sci. 2019, 540, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Li, Z.K.; Yan, X.; Guo, Y.J.; Lang, W.Z. Improved ultrafiltration performance and chlorine resistance of PVDF hollow fiber membranes via doping with sulfonated graphene oxide. Chem. Eng. J. 2017, 317, 901–912. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, Y.; Xu, Z.; Zhang, G. Advanced membrane bioreactors systems: New materials and hybrid process design. Bioresour. Technol. 2018, 269, 476–488. [Google Scholar] [CrossRef]
- Qin, L.; Li, C.; Li, X.; Zhang, X.; Shen, C.; Meng, Q.; Shen, L.; Lu, Y.; Zhang, G. Confined encapsulation of living cells in self-assembly fiber macrospheres with micro/nanoporous polymer shell for transformation of contaminants to green energy. J. Mater. Chem. A 2020, 8, 1929–1938. [Google Scholar] [CrossRef]
- Qin, L.; Gao, M.; Zhang, M.; Feng, L.; Liu, Q.; Zhang, G. Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. Water Res. 2020, 187, 116430. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, H.; Yang, F.; Liu, L. Characterization of cake layer in submerged membrane bioreactor. Environ. Sci. Technol. 2007, 41, 4065–4070. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Teng, J.; Shen, L.; Yu, G.; Li, R.; Xu, Y.; Wang, F.; Liao, B.; Lin, H. Novel insights into membrane fouling caused by gel layer in a membrane bioreactor: Effects of hydrogen bonding. Bioresour. Technol. 2019, 276, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kang, S.; Shin, H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. J. Membr. Sci. 2003, 216, 217–227. [Google Scholar] [CrossRef]
- Yan, L.; Li, R.; Song, Y.; Jia, Y.; Li, Z.; Song, L.; Zhang, H. Characterization of the Fouling Layer on the Membrane Surface in a Membrane Bioreactor: Evolution of the Foulants’ Composition and Aggregation Ability. Membranes 2019, 9, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johir, M.A.H.; Vigneswaran, S.; Sathasivan, A.; Kandasamy, J.; Chang, C.Y. Effect of organic loading rate on organic matter and foulant characteristics in membrane bioreactor. Bioresour. Technol. 2012, 113, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhang, G.; Meng, Q.; Zhang, H.; Xu, L.; Lv, B. Enhanced submerged membrane bioreactor combined with biosurfactant rhamnolipids: Performance for frying oil degradation and membrane fouling reduction. Bioresour. Technol. 2012, 126, 314–320. [Google Scholar] [CrossRef]
- Wang, G.; Fan, Z.; Wu, D.; Qin, L.; Zhang, G.; Gao, C.; Meng, Q. Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate. Desalination 2014, 349, 136–144. [Google Scholar] [CrossRef]
- Shen, L.; Lei, Q.; Chen, J.; Hong, H.; He, Y.; Lin, H. Membrane fouling in a submerged membrane bioreactor: Impacts of floc size. Chem. Eng. J. 2015, 269, 328–334. [Google Scholar] [CrossRef]
- Satyawali, Y.; Balakrishnan, M. Effect of PAC addition on sludge properties in an MBR treating high strength wastewater. Water Res. 2009, 43, 1577–1588. [Google Scholar] [CrossRef]
- Wilen, B.M.; Jin, B.; Lant, P. The influence of key constituents in activated sludge on surface and flocculating properties. Water Res. 2003, 37, 2127–2139. [Google Scholar] [CrossRef]
- Thompson, G.; Forster, C.F. Bulking in activated sludge plants treating paper mill wastewaters. Water Res. 2003, 37, 2636–2644. [Google Scholar] [CrossRef]
Composition | Concentration (mg/L) |
---|---|
Glucose | 350 |
Sodium acetate anhydrous | 200 |
NH4Cl | 300 |
KH2PO4 | 25 |
KNO3 | 50 |
CaCl2·2H2O | 8 |
MgCl2·6H2O | 12 |
Methylene blue (MB) | 20 |
COD 1 (mg/L) | 660–1025 |
NH3-N (mg/L) | 83–112 |
pH | 6.0–8.0 |
SS 2 (mg/L) | 200–300 |
Process Unit | COD | True Color | NH3-N | |||
---|---|---|---|---|---|---|
Con. (mg/L) | Rem. (%) | Abs | Rem. (%) | Con. (mg/L) | Rem. (%) | |
Raw | 845.6 | 0 | 0.571 | 0 | 98.4 | 0 |
IPMBR 1-supernatant | 134.7 | 84.1 | 0.083 | 85.5 | 24.1 | 75.5 |
IPMBR effluent | 62.9 | 92.6 | 0.044 | 92.3 | 15.8 | 84.0 |
CMBR 2-supernatant | 239.0 | 71.7 | 0.178 | 68.8 | 31.3 | 68.2 |
CMBR effluent | 162.1 | 80.8 | 0.144 | 74.8 | 23.8 | 75.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Wu, X.; Jin, B.; Zhang, C.; Zheng, R.; Qin, L. Coupling of Immobilized Photosynthetic Bacteria with a Graphene Oxides/PSF Composite Membrane for Textile Wastewater Treatment: Biodegradation Performance and Membrane Anti-Fouling Behavior. Membranes 2021, 11, 226. https://doi.org/10.3390/membranes11030226
Cheng J, Wu X, Jin B, Zhang C, Zheng R, Qin L. Coupling of Immobilized Photosynthetic Bacteria with a Graphene Oxides/PSF Composite Membrane for Textile Wastewater Treatment: Biodegradation Performance and Membrane Anti-Fouling Behavior. Membranes. 2021; 11(3):226. https://doi.org/10.3390/membranes11030226
Chicago/Turabian StyleCheng, Jing, Xiaofeng Wu, Binbin Jin, Chenchen Zhang, Rongwei Zheng, and Lei Qin. 2021. "Coupling of Immobilized Photosynthetic Bacteria with a Graphene Oxides/PSF Composite Membrane for Textile Wastewater Treatment: Biodegradation Performance and Membrane Anti-Fouling Behavior" Membranes 11, no. 3: 226. https://doi.org/10.3390/membranes11030226
APA StyleCheng, J., Wu, X., Jin, B., Zhang, C., Zheng, R., & Qin, L. (2021). Coupling of Immobilized Photosynthetic Bacteria with a Graphene Oxides/PSF Composite Membrane for Textile Wastewater Treatment: Biodegradation Performance and Membrane Anti-Fouling Behavior. Membranes, 11(3), 226. https://doi.org/10.3390/membranes11030226