Improved Oxidative Stability by Embedded Cerium into Graphene Oxide Nanosheets for Proton Exchange Membrane Fuel Cell Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hybrid GO/Ce Material
2.3. Synthesis of Composite Membrane
2.4. Characterization
2.4.1. Chemical Structure Analysis
2.4.2. Ion Exchange Capacity (IEC)
2.4.3. Proton Conductivity
2.4.4. Water Uptake and Swelling Ratio
2.4.5. Thermal and Chemical Stability
2.4.6. Oxidative Stability
3. Results and Discussion
3.1. Chemical Structure Characterization
3.2. Proton Conductivity, Water Uptake and Swelling Ratio
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Bruijn, F.A.; Dam, V.A.T.; Janssen, G.J.M. Review: Durability and Degradation Issues of PEM Fuel Cell Components. Fuel Cells 2008, 8, 3–22. [Google Scholar] [CrossRef]
- Manohar, M.; Kim, D. Advantageous of hybrid fuel cell operation under self-humidification for energy efficient bipolar membrane. ACS Sustain. Chem. Eng. 2019, 7, 16493–16500. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, X.Z.; Martin, J.J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 2008, 184, 104–119. [Google Scholar] [CrossRef]
- Tinh, V.D.C.; Kim, D. Enhancement of oxidative stability of PEM fuel cell by introduction of HO• radical scavenger in Nafion ionomer. J. Membr. Sci. 2020, 613, 118517. [Google Scholar] [CrossRef]
- Kundu, S.; Simon, L.C.; Fowler, M.W. Comparison of two accelerated NafionTM degradation experiments. Polym. Degrad. Stab. 2008, 93, 214–224. [Google Scholar] [CrossRef]
- Swider-Lyons, K.E.; Campbell, S.A. Physical chemistry research toward proton exchange membrane fuel cell advancement. J. Phys. Chem. Lett. 2013, 4, 393–401. [Google Scholar] [CrossRef]
- Yoshimura, K.; Iwasaki, K. Aromatic polymer with pendant perfluoroalkyl sulfonic acid for fuel cell applications. Macromolecules 2009, 42, 9302–9306. [Google Scholar] [CrossRef]
- Diao, H.; Yan, F.; Qiu, L.; Lu, J.; Lu, X.; Lin, B.; Li, Q.; Jiang, S.; Liu, W.; Liu, J.; et al. High performance cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid)-based proton exchange membranes for fuel cells. Macromolecules 2010, 43, 6398–6405. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, X.; Wu, H.; Wang, J.; Wang, Y. Proton conducting CS/P(AA-AMPS) membrane with reduced methanol permeability for DMFCs. J. Power Sources 2008, 180, 143–153. [Google Scholar] [CrossRef]
- Zatoń, M.; Rozière, J.; Jones, J.D. Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: A review. Sustain. Energy Fuels 2017, 1, 409–438. [Google Scholar] [CrossRef]
- Chen, T. Fuller, Modeling of H2O2 formation in PEMFCs. Electrochim. Acta 2009, 54, 3984–3995. [Google Scholar] [CrossRef]
- Shi, W.; Baker, L.A. Imaging heterogeneity and transport of degraded Nafion membranes. J. RSC Adv. 2015, 5, 99284–99290. [Google Scholar] [CrossRef]
- Ghassemzadeh, L.; Peckham, T.J.; Weissbach, T.; Luo, X.; Holdcroft, S. Selective formation of hydrogen and hydroxyl radicals by electron beam irradiation and their reactivity with perfluorosulfonated acid ionomer. J. Am. Chem. Soc. 2013, 135, 15923–15932. [Google Scholar] [CrossRef]
- Hayon, E.; Ibata, T.; Lichtin, N.; Simic, M. Sites of attack of hydroxyl radicals on amides in aqueous solution. J. Am. Chem. Soc. 1970, 93, 5388. [Google Scholar] [CrossRef]
- Eriksson, P.; Tal, A.A.; Skallberg, A.; Brommesson, C.; Hu, Z.; Boyd, R.D.; Olovsson, W.; Fairley, N.; Abrikoso, I.A.; Zhang, X.; et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci. Rep. 2018, 8, 6999. [Google Scholar] [CrossRef] [PubMed]
- Vo, D.C.T.; Nguyen, M.D.T.; Kim, D. Dual sulfonated poly (arylene ether ketone) membrane grafted with 15-crown-5-ether for enhanced proton conductivity and anti-oxidation stability. Mol. Syst. Des. Eng. 2019, 4, 901–911. [Google Scholar] [CrossRef]
- Parnian, M.J.; Rowshanzamir, S.; Prasad, A.K.; Advani, S.G. High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications. J. Memb. Sci. 2018, 556, 12–22. [Google Scholar] [CrossRef]
- Celardo, I.; Pedersen, J.Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, D. Chemical stability enhancement of Nafion membrane by impregnation of a novel organic· OH radical scavenger, 3, 4-dihydroxy-cinnamic acid. J. Memb. Sci. 2018, 566, 1–7. [Google Scholar] [CrossRef]
- Kim, K.; Bae, J.; Lim Heo, M.-Y.P.S.; Choi, W.; Kwon, H.-H.; Lee, J.-C. Enhanced physical stability and chemical durability of sulfonated poly (arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications. J. Memb. Sci. 2017, 525, 125–134. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Sreedhar, B.; Sain, S.; Ray, S.; Jain, S.L. Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Effective Visible-Active Catalyst for the Photoreduction of Carbon Dioxide. Chem. Eur. J. 2014, 20, 6154–6161. [Google Scholar] [CrossRef] [Green Version]
- Samanta, K.; Some, S.; Kim, Y.; Yoon, Y.; Min, M.; Lee, S.M.; Park, Y.; Lee, H. Highly hydrophilic and insulating fluorinated reduced graphene oxide. Chem. Commun. 2013, 49, 8991–8993. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sadanandhan, M.A.; Jain, S.L. Silver doped reduced graphene oxide as a promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New J. Chem. 2019, 43, 3116. [Google Scholar] [CrossRef]
- Maheswari, N.; Muralidharan, G. Supercapacitor Behavior of Cerium Oxide Nanoparticles in Neutral Aqueous Electrolytes. Energy Fuels 2015, 29, 8246–8253. [Google Scholar] [CrossRef]
- Khan, M.E.; Khan, M.M.; Cho, M.H. Ce3+-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO2-Graphene Nanostructures. Sci. Rep. 2017, 7, 5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, D.C.; Jeon, I.; Jeong, E.S.; Jho, J.Y. Mechanical properties and chemical durability of nafion/sulfonated graphene oxide/cerium oxide composite membranes for fuel-cell applications. Polymers 2020, 12, 1375. [Google Scholar] [CrossRef]
- Tsipoaka, M.; Aziz, A.; Shanmugam, S. Degradation-Mitigating Composite Membrane That Exceeds a 1 W cm−2 Power Density of a Polymer Electrolyte Membrane Fuel Cell Operating Under Dry Conditions. ACS Sustain. Chem. Eng. 2021, 9, 2693–2704. [Google Scholar] [CrossRef]
- Lee, G.W.; Shim, G.H.; Kim, J.M.; Seol, C.; Kim, S.M.; Ahn, H.S. Two/three-dimensional reduced graphene oxide coating for porous flow distributor in polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 2020, 45, 12972–12981. [Google Scholar] [CrossRef]
- Yamaguchi, M. DFT Study on the Chemical Degradation Mechanism of Perfluorobis (sulfonyl) imide Sulfonic Acid Ionomer Membranes. J. Phys. Chem. C 2021, 125, 1929–1939. [Google Scholar] [CrossRef]
- Danilczuk, M.; Schlick, S.; Coms, F.D. Degradation mechanism of perfluorinated membranes. In The Chemistry of Membranes Used in Fuel Cells: Degradation and Stabilization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 19–53. [Google Scholar]
Membrane | WU (%) | SW (%) | IEC (meq g−1) | Conductivity (S·cm−1) |
---|---|---|---|---|
Nafion | 19 | 09 | 0.90 | 0.068 |
Nafion-GO/Ce-1 | 21 | 11 | 0.82 | 0.059 |
Nafion-GO/Ce-2 | 23 | 13 | 0.78 | 0.061 |
Nafion-GO/Ce-3 | 20 | 08 | 0.70 | 0.043 |
Nafion-GO/Ce-4 | 16 | 06 | 0.62 | 0.039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.P.; Tinh, V.D.C.; Kim, D. Improved Oxidative Stability by Embedded Cerium into Graphene Oxide Nanosheets for Proton Exchange Membrane Fuel Cell Application. Membranes 2021, 11, 238. https://doi.org/10.3390/membranes11040238
Sharma PP, Tinh VDC, Kim D. Improved Oxidative Stability by Embedded Cerium into Graphene Oxide Nanosheets for Proton Exchange Membrane Fuel Cell Application. Membranes. 2021; 11(4):238. https://doi.org/10.3390/membranes11040238
Chicago/Turabian StyleSharma, Prem P., Vo Dinh Cong Tinh, and Dukjoon Kim. 2021. "Improved Oxidative Stability by Embedded Cerium into Graphene Oxide Nanosheets for Proton Exchange Membrane Fuel Cell Application" Membranes 11, no. 4: 238. https://doi.org/10.3390/membranes11040238
APA StyleSharma, P. P., Tinh, V. D. C., & Kim, D. (2021). Improved Oxidative Stability by Embedded Cerium into Graphene Oxide Nanosheets for Proton Exchange Membrane Fuel Cell Application. Membranes, 11(4), 238. https://doi.org/10.3390/membranes11040238