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Abstract: The recent outbreak of the COVID-19 pandemic in 2020 reasserted the necessity of artificial
lung membrane technology to treat patients with acute lung failure. In addition, the aging world
population inevitably leads to higher demand for better artificial organ (AO) devices. Membrane
technology is the central component in many of the AO devices including lung, kidney, liver and
pancreas. Although AO technology has improved significantly in the past few decades, the quality
of life of organ failure patients is still poor and the technology must be improved further. Most of
the current AO literature focuses on the treatment and the clinical use of AO, while the research
on the membrane development aspect of AO is relatively scarce. One of the speculated reasons
is the wide interdisciplinary spectrum of AO technology, ranging from biotechnology to polymer
chemistry and process engineering. In this review, in order to facilitate the membrane aspects of the
AO research, the roles of membrane technology in the AO devices, along with the current challenges,
are summarized. This review shows that there is a clear need for better membranes in terms of
biocompatibility, permselectivity, module design, and process configuration.

Keywords: membrane; artificial organs; artificial kidney; artificial lung; artificial liver; bioartificial
pancreas; biocompatibility

1. Introduction

Every living organism strives to maintain homeostasis with the surrounding environ-
ments. The cells, tissues, and organs of a living organism control its internal environments
to maintain safe concentration ranges in order to maintain life. In cases of unexpected
tissue damage or organ failures, cells have an extraordinary ability to repair themselves
and to regain homeostasis. However, some acute and chronic damages can be irreversible,
leading to life-threatening failures that require medical intervention and treatment.

The median age of the world population has increased steadily (Figure 1). Such an
aging population inevitably leads to higher chances of organ failures, and the best available
treatment for such patients now is organ transplantation. However, as shown in Figure 1,
the gap between the number of organ donors and the number of patients has expanded
steadily and is only expected to get wider. In addition, although the stem-cell-derived
treatment could be a promising option in the future [1–4], it has not been fully developed
yet. Hence, currently, the optimal solution for organ failure patients in the short-term is
artificial organ (AO) technology, until the patient recovers (i.e., bridge-to-recovery) or until
the patient receives an organ transplant (i.e., bridge-to-transplantation).

The advancements in AO technology are truly astonishing, and they are increasingly
becoming important, even necessary, in the modern medical treatments. Nowadays,
AO technology can partly augment the functions of the human organs by maintaining
physiochemical gradients in the safe range. Many of these AOs employ synthetic polymeric
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membranes to assist the physical and chemical functions of the failed organs. Particularly,
AOs that employ membrane technology includes artificial lung, kidney, liver, and pancreas.

Membranes 2021, 11, x FOR PEER REVIEW 2 of 35 
 

 

 
Figure 1. Number of people receiving transplants, waiting for transplants, and donors in the US 
(data obtained from [5]), plotted together with the statistic of the World Median Age (data ob-
tained from [6]). 
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Membrane technology has also made incredible strides in the past few decades. No-
tably, water purification and desalination membranes have reached the state-of-the-art, 
dominating more than half of the desalination market [7]. Ion exchange membranes such 
as Nafion have become a main component for fuel cell technology. Moreover, gas separa-
tion membranes are now a key player in many fields including CO2 capture and hydrogen 
purification [8]. As a separate front, membranes for the healthcare and biomedical mar-
kets, which are the main topic of this review, have steadily increased their market share 
[9].  

The market size of the artificial kidney (e.g., hemodialysis) reached USD 74 billion in 
2019 [10]. As for the artificial lung market, also commonly known as ECMO (extracorpo-
real membrane oxygenator), is expected to grow up to USD 305 million by 2021 [11]. How-
ever, this forecast may have changed with the recent outbreak of COVID-19 in 2020, as 
ECMO is one of the key treatments for severe COVID-19 patients. The artificial liver and 
pancreas markets are still relatively small because the technology is not mature enough 
and is as yet without firm clinical effectiveness data.  

Surprisingly, despite the considerable market size of the healthcare industries, the 
literature on membrane research in such fields is relatively scarce compared to other ap-
plications such as water and gas separation membranes. In fact, there is a large amount of 
literature that reports the use of AO for clinical research, but not as many that actually 
develop AO membranes. One of the reasons may be that AO research requires interdisci-
plinary knowledge and there exists a wide gap between the membrane field and biomed-
ical technology. Membrane researchers are primarily from the nonbiomedical disciplines, 
and vice versa. 
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Membrane technology has also made incredible strides in the past few decades.
Notably, water purification and desalination membranes have reached the state-of-the-art,
dominating more than half of the desalination market [7]. Ion exchange membranes such as
Nafion have become a main component for fuel cell technology. Moreover, gas separation
membranes are now a key player in many fields including CO2 capture and hydrogen
purification [8]. As a separate front, membranes for the healthcare and biomedical markets,
which are the main topic of this review, have steadily increased their market share [9].

The market size of the artificial kidney (e.g., hemodialysis) reached USD 74 billion in
2019 [10]. As for the artificial lung market, also commonly known as ECMO (extracorporeal
membrane oxygenator), is expected to grow up to USD 305 million by 2021 [11]. However,
this forecast may have changed with the recent outbreak of COVID-19 in 2020, as ECMO is
one of the key treatments for severe COVID-19 patients. The artificial liver and pancreas
markets are still relatively small because the technology is not mature enough and is as yet
without firm clinical effectiveness data.

Surprisingly, despite the considerable market size of the healthcare industries, the
literature on membrane research in such fields is relatively scarce compared to other ap-
plications such as water and gas separation membranes. In fact, there is a large amount
of literature that reports the use of AO for clinical research, but not as many that actually
develop AO membranes. One of the reasons may be that AO research requires interdisci-
plinary knowledge and there exists a wide gap between the membrane field and biomedical
technology. Membrane researchers are primarily from the nonbiomedical disciplines, and
vice versa.

Although the artificial kidney technology can be considered as mature clinically, other
types of membrane-based AOs, such as artificial lung, liver, and pancreas, still suffer from
many technical challenges that must be resolved urgently. Needless to say, such challenges
are very complex, requiring interdisciplinary collaboration across the fields of chemistry,
biology, materials, and engineering. In addition, the quality of life of organ failure patients,
albeit improved, is still poor. The AO technology must continuously improve not only
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from the membrane perspective, but also from the biocompatibility fronts to improve the
quality of life and well-being of the patients.

Hence, in this review, in an attempt to narrow the gap between the membrane research
and biomedical fields, the current status and challenges of membrane technology applied
to artificial organs were compiled. More specifically, this review was written from a
membrane researcher perspective, in order to aid and to facilitate future research on better
membrane materials and module design.

2. Membrane-Based Artificial Organs

It is very important to clearly distinguish the key roles of an organ. Most organs are
multifunctional and they perform physical, chemical and biological roles simultaneously
with incredible precision. Generally, the physical roles of an organ can be partly or fully
augmented with membrane technology; however, currently, the chemical and biological
roles cannot be replaced in most cases.

2.1. Artificial Lung (Blood Oxygenation Membranes)

The lungs are part of the respiratory system, and their main function is to oxygenate
the bloodstream while removing carbon dioxide in tandem. Hence, the lungs can roughly
be considered as a gas exchange membrane, and the physical functions of the lungs can be
partly augmented using membrane technology. Similar to the lung alveoli, a membrane
can provide an interface between the air (oxygen) and the blood to facilitate the exchange
of gases (Figure 2a).
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Figure 2. (a) Hollow fiber artificial lung schematic. The blood flows through the shell side of the hollow fiber module, and
air (enriched oxygen) is supplied into the bore side. (b) Extracorporeal membrane oxygenation (ECMO) device schematic.

One of the iconic artificial lung devices was the bubble oxygenator proposed by
De Wall and Lillehei in 1955 [12,13]. However, bubble oxygenators led to unwanted
hemolysis (i.e., lysis or breakage of red blood cells) and air embolism, which was overcome
with the use of membranes. Continuous improvements in the membrane permeance
performance reduced the required surface area dramatically from 25 m2 of multilayer flat
sheet membranes [14] down to about 2 m2 in the form of hollow fiber membranes [15,16].
Currently, the bottleneck is not caused by the membrane gas transport performance, but
the blood side mass transfer resistance limits the blood oxygenation efficiency (discussed
in detail below).

The artificial lung technology can be roughly split into two categories: a short-term
and a long-term respiratory support. The short-term supports include open-heart bypass
surgery, of which about 1.5 million cases are performed annually [9]. The venous blood
from the patient is circulated extracorporeally (i.e., outside the body) using a heart–lung
machine, also known as the cardiopulmonary bypass system (CPB). The blood gets oxy-
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genated inside a membrane module (i.e., oxygenator) then returns to the patient. The
operation lasts about six hours, and the purpose of the CPB is to temporarily augment both
the heart and lung functions.

The long-term respiratory support is carried out using the extracorporeal membrane
oxygenation (ECMO) system. This treatment is reserved for severe lung failure patients,
due to either aging, chronic lung diseases, or acute virus infection (e.g., MERS and COVID-
19) [17], where mechanical ventilator treatment cannot supply the necessary oxygen de-
mand. The components of an ECMO are similar to those of a CPB, but the term ECMO is
generally reserved for long-term respiratory treatment (days to weeks). The main purpose
of the ECMO system is to provide support until the body naturally recovers (bridge-to-
recovery) [18]. Its clinical efficiency has been proved many times, as it can increase the
survival rate of the patients by up to 75% relative to conventional treatment [17,19–28].

2.1.1. Blood Oxygenation Physiology and the Role of Membrane

A set of adult human lungs is composed of hundreds of millions of alveoli that can
exchange O2/CO2, with the effective surface area of approximately 70 m2 [29]. The O2/CO2
exchange rate of an average adult human lung is in the range of 200–250 mL/min (at rest)
to 6 L/min (active work-out) [30].

The exchange of gases between atmosphere and blood follows series of steps. The
atmospheric oxygen is first inhaled into the lung, which then diffuses through the alveolus
wall into the blood (Figure 3a). The oxygen then dissolves into the blood plasma, and is
subsequently taken up by red blood cells. The dissolved oxygen inside red blood cells
then binds to the hemoglobin proteins. The oxygenated blood is then carried around the
body to aid cell aerobic metabolism. On the other hand, CO2 gas follows the opposite path
(Figure 3b), except that most of the CO2 is carried by blood as carbonate and bicarbonate
ions, not bound to the hemoglobin proteins (only about 5%).

The key difference between the two gases is the solubility (Figure 3b). The oxygen
is only sparingly soluble in blood plasma (Henry’s constant of 0.0031 mL/mmHg O2/dL
of blood), necessitating an oxygen carrier protein known as hemoglobin. The amount
of dissolved O2 in plasma is commonly expressed in partial pressure unit. Assuming
equilibrium, the partial pressure of oxygen can be conveniently correlated with the blood
saturation level by the Hill equation [31,32]

Hb saturation (%) = 100
Kx∝

1 + Kx∝ (1)

where x (mmHg) is the partial pressure of O2; and K and ∝ are the parameter values
(K = 0.01455 and ∝ = 1.405) [31].

Hence, by measuring the oxygen concentration in blood plasma, the hemoglobin
saturation percentage of the blood can be estimated [33]. The minimal metabolic O2
requirement of an adult is about 11 mmol/min, and approximately 9 mmol/min of CO2
must be removed from the body [34]. Hence, the CO2/O2 exchange ratio needs to be about
0.8, and the artificial lung performance must be carefully tuned to meet this exchange ratio
to avoid unwanted hyper- or hypocapnia [34]. The maximum driving force attainable
in normal physiological condition and in membrane module is graphically illustrated in
Figure 4.
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Compared to the alveoli conditions, the blood is exposed to steeper partial pressure
gradients of O2 and CO2 in oxygenator membranes (Figure 4b). The deoxygenated blood
enters the membrane with the partial pressures of O2 and CO2 at 40 and 46 mmHg,
respectively. The feed gas flows through the bore side of the oxygenator membrane, and
CO2/O2 exchange occurs at the membrane–blood interface. The oxygenated bloodstream
exits the membrane with the partial pressures of 100–150 mmHg for O2 and 30–40 mmHg
for CO2 [34]. It is important to note here that the driving force for CO2 exchange is
lower than that of O2. Hence, the gas flowrate must be sufficiently high to meet the CO2
removal requirement and to satisfy the CO2/O2 exchange ratio of 0.8. It will be stressed
several times in this review that the membrane permeance is not the bottleneck in the
current artificial lung technology. Instead, fixing the exchange ratio to 0.8 is more of an
engineering aspect of controlling the driving force for gas exchange. A comparison of the
key parameters of human lungs and current oxygenator membranes is summarized in
Table 1.

Table 1. Comparison of key parameters of human lungs and oxygenator membranes.

Parameters Lung Oxygenator Membrane Ref.

Exchange surface area 70 m2 1–3 m2 [34,35]
Surface characteristics Hydrophilic Hydrophobic [34]
Membrane thickness 1–2 µm 50–100 µm [34]

Gas permeability High Low [34]
Blood contact time <1 s 5–15 s [34]

Type of gas Air Enriched air [34]
O2 quantity added into blood 2 L/min >470 mL/min [35]

CO2 quantity removed from blood 1.6 L/min >370 mL/min [35]

Similar to the lung physiology, the blood oxygenator system also consists of three
phases: gas phase, membrane phase and blood phase. The most important parameter is
the oxygen transfer rate, N (mol s−1) within the membrane oxygenator. The total oxygen
transfer rate can be calculated by measuring the oxygen partial pressures of inlet and outlet
bloodstreams (using a blood gas analyzer device). It can also be represented from the
membrane perspective using the overall mass transfer coefficient, K (mol m−2 s−1 Pa−1),
as follows:

N = KA ∆PLM (2)

where A (m2) is the effective membrane surface area, ∆PLM (Pa) is the logarithmic mean
difference of oxygen partial pressures.

The oxygen transfer rate, N, is directly proportional to the mass transfer coefficient,
and by definition, inversely proportional to the sum of resistances within the membrane
oxygenator. The total mass transport resistance Rtotal contains three main resistances: gas
phase resistance, membrane phase resistance, and blood phase resistance.

Rtotal = RG + RM + RB (3)

The total mass transport resistance Rtotal can also be written as:

1
K

=
1

KG
+

1
KM

+
1

KB
=

1
KG

+
δ

B
+

1
KB

(4)

where = 1
K ; G, M and B are gas, membrane and blood phases, respectively. δ (m) is the

membrane thickness, and B (mol m m−2 s−1 Pa−1) is the permeability of the membrane.
The gas transfer rate of the oxygenation device can be improved by reducing these

three mass transport resistances (Figure 5). Among the resistances, the gas phase boundary
layer resistance is negligible [9,34,36]. On the other hand, the blood phase boundary layer
resistance can be as high as 100 times larger than the membrane resistance [9]. Hence, for
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current hollow fiber modules, the total mass transfer coefficient of the device K can simply
be approximated to the mass transfer coefficient of the blood boundary layer KB [36].
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The above analysis clearly shows that the focus must be given to lower the blood phase
resistance, by providing better mixing for the bloodstream. Although higher velocity can
give better mixing, it is also important to consider the pressure drop along the oxygenator,
as high shear stress can cause blood trauma, which leads to unwanted hemolysis. There is a
tradeoff between gas transfer rate and blood trauma. Many studies have also been carried
out to optimize oxygenator geometries that give more complex flow patterns [36–40], as
shown in Figure 6.

The mass transfer performance can be analyzed and cross-compared using the Sher-
wood number (Sh)—a dimensionless parameter as a function of the Reynold number (Re)
and the Schmidt number (Sc). The Sherwood number for hollow fiber membrane module
can be expressed as follows [36]:

Sh = f (Re, Sc) = a Reb Scc (5)

The Sherwood number can be also written as:

kB,L d0

DB
= a

(
d0 u0

v

)b( v
DB

)c
(6)

where kB,L (m s−1) is the mass transfer coefficient which depends on the oxygen concen-
tration in liquid (kB,L = HkB); d0 (m) is the outer diameter of hollow fiber membrane, u0
(m s−1) is the superficial velocity of blood, v (m2 s−1) is the kinematic viscosity, and DB
(m2 s−1) is the diffusion coefficient of oxygen in blood.

Moreover, the Sherwood number for blood flowing in a thin channel, such as a
microfluidic device, can be expressed as follows:

Sh = a Gzb =

(
dh
L

)
Re Sc (7)

where Gz is the Graetz number, a dimensionless number represents for the laminar flow in
a conduit, dh (m) is the hydraulic diameter, and L (m) is the length of fiber. The Sherwood
numberdepends on the number of hollow fiber in a bundle or the fiber orientation in the
device (Table 2).
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Figure 6. Hollow fiber arrangement in parallel (module) (A,C) and in perpendicular (module) (B,D); blood flow direction
in coiled construction design (module) (A,B) and in rectangular solid design (module) (C,D). (Reprinted with permission
from [36].).

Many experiments on various configurations have been conducted to obtain reliable
Sherwood correlations. Generally, the gas transfer rate is better for the transverse flow
compared to the parallel flow configuration. More recently, a generalized model for both
the transverse and parallel flow for the oxygenators was reported to predict the oxygenation
performance [37], as summarized in Table 3. The authors showed that the oxygenator void
fraction of hollow fiber bundles (ε f ) affects the mass transfer coefficient in several ways.
For example, when ε f is between 0.3 to 0.5, the mass transfer coefficient of the square fiber
arrangement with perpendicular flow is better than the staggered arrangement. However,
for the parallel flow, the behavior tends to be the opposite [37].
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Table 2. Mass transfer correlations for different blood oxygenator devices.

Type of Membrane Blood Flow Pattern Correlation for Blood Side Mass Transfer Coefficient Ref.

PP/Hollow fibers Across hollow fiber mat Sh = 0.8 Re0.59 Sc0.33 [38]
PP/Flat sheet In thin channel Sh = 0.5 Gz [38]

PP /Hollow fibers Across a 1 to 6 perpendicular
hollow fibers

Sh = Re0.67 Sc0.33 exp
(

3.26 ε f − 4.27
)

(
ε f is the void fraction)

[39]

PP /Hollow fibers Across a parallel hollow fibers Sh = 0.46 Re0.76 Sc0.33 [36]

PP /Hollow fibers Across a perpendicular
hollow fibers Sh = 0.14 Re0.9 Sc0.33 [36]

PMP /Hollow fibers Across a parallel hollow fibers Sh = 0.39 Re0.76 Sc0.33 [40]

Table 3. Generalized mass transfer correlations with parallel and transverse flow for hollow fiber blood oxygenator in
square or staggered arrangement (with ε f is the void fraction of the bundle of hollow fibers) (equations obtained from [37]).

Flow Direction Gas Type
Fiber Bundles Arrangement

Square Staggered

Parallel flow

O2
Sh = 0.0180ε

−8.7133 log (ε f )−4.8654
f

Re0.3050ε
3.2197 log (ε f )+0.9927

f . Sc0.33

Sh = 0.0584ε−0.751
f

Re0.237ε−0.286
f . Sc0.33

CO2
Sh = 0.3814ε

−4.7273 log (ε f )−2.6162
f

Re0.3310ε
3.6219 log (ε f )+1.6150

f . Sc0.33

Sh = 0.6735ε−0.578
f

Re0.2082ε−0.142
f . Sc0.33

Transverse flow

O2
Sh = 0.0892ε−0.864

f

Re0.3288ε−0.051
f . Sc0.33

Sh = 0.1311ε−0.666
f

Re0.3433ε−0.034
f . Sc0.33

CO2
Sh = 0.3838ε−0.611

f

Re0.2676ε−0.055
f . Sc0.33

Sh = 0.5216ε−0.505
f

Re0.2547ε−0.130
f . Sc0.33

2.1.2. Membranes for Artificial Lung

Currently, the two main polymers used for artificial lung membranes are polypropy-
lene (PP) and poly-4-methylpentene (PMP). The first generation artificial lung is a PP-based
microporous membrane with hydrophobic characteristics. These membranes are highly
porous with excellent gas permeance but have a short lifetime of about six hours [41,42],
after which the membrane gets wet. They are mostly fabricated via the melt-extrusion-
stretching method, which gives an average pore size between 0.05 to 0.1 µm. Another
widely employed fabrication method is the TIPS process (i.e., thermally induced phase
separation, which gives narrower pore size distribution [43].

As the PP membrane is intrinsically hydrophobic, the blood only contacts the surface
of the membrane to facilitate the gas exchange; hence, the blood does not (and should
not) leak through the membrane [41]. This type of membrane process is also commonly
known as the membrane contactor process. For the open-heart surgery application, the
microporous membranes are reliable. However, in long-term treatment, the plasma proteins
adsorb onto the membrane surface, which increases the surface energy of the membrane
material, eventually allowing unwanted membrane wetting and allowing the blood plasma
to break through [41,44,45].

In the early 2000s, the second generation artificial lung membrane was developed
based on the PMP material with a remarkably longer lifetime (last 2-4 weeks) [46–48].
Compared to the porous PP membrane, PMP membranes have a thin dense layer that can
effectively prevent the plasma leakage [46,48]. As PMP is generally insoluble in organic
solvents, these membranes are also prepared via melt-extrusion or TIPS method. From the
membrane technology perspective, the formation of such skin layer with TIPS is interesting,



Membranes 2021, 11, 239 10 of 33

as the thin skin layer of a semicrystalline polymer can only be formed via combination
of NIPS (nonsolvent-induced phase separation) and TIPS technique, so called N-TIPS
method [43,49].

Expectedly, the presence of a thin dense layer significantly reduces the gas perme-
ance. Compared to the porous PP membrane, where gas molecules can freely permeate
through, PMP membranes with a dense skin layer exhibit two orders of magnitude lower
gas permeance as the gas molecules must diffuse through the dense PMP material. [45].
Nevertheless, compared to other polymeric materials, PMP has high intrinsic gas perme-
ability, as summarized in Table 4. It is important to clearly distinguish the term membrane
gas permeance from material intrinsic gas permeability. The gas permeance is typically in
the unit of GPU (gas permeation unit) and it represents the performance of a membrane.
On the other hand, the gas permeability is in the unit of barrer, and it characterizes the
intrinsic gas permeability of a dense material.

Additionally, as discussed previously, the membrane permeance is not the bottleneck
in the process of blood oxygenation. Hence, even with such low permeance, the blood oxy-
genation efficiency is not compromised. PMP also exhibit good hydrophobicity, preventing
the unwanted wetting of the membrane by the blood plasma. Due to these advantages,
PMP membranes can be applied to long-term treatment including ECMO, continuously for
more than 42 days [39,40].

More recently, third generation artificial lung membranes have been proposed using
fluoropolymers [50]. The characteristic low surface energy of fluoropolymers prevents
unwanted protein adsorption onto the membrane surface, potentially improving the long-
term hemocompatibility of artificial lung membranes. Among the known fluoropolymers,
polytetrafluoroethylene (PTFE), also known by its tradename Teflon, exhibits outstanding
characteristics such as low surface energy, chemical stability, mechanical rigidity, and high
biocompatibility. However, it is technically difficult to process PTFE polymer into a thin,
hollow fiber shape due to its high melt viscosity.

Table 4. The intrinsic gas permeability (barrer) of oxygen and carbon dioxide at 30 ◦C for dense polymeric films.

Polymer P(O2) P(CO2) Ref.

Polypropylene (PP) 2.2 9.2 [51,52]
Poly 4-methyl pentene-1 (PMP) 32.3 92.6 [52]
Polydimethylsiloxane (PDMS) 605 3240 [52]

Teflon AF2400 1600 3900 [53]
Teflon AF1600 270 520 [53]
Hyflon AD80 67 150 [53]
Hyflon AD60 57 130 [53]

Natural rubber 23.3 153 [52]
Polyethylene (dens. 0.922) 6.9 28 [52]

Polytetrafluoroethylene (PTFE) 4.9 12.7 [52]
Neoprene 4 25.8 [52]

Polystyrene 2.63 10.5 [51,52]
Polycarbonate 1.4 8 [52]
Butyl rubber 1.3 5.18 [52]

Cellulose acetate 0.8 2.4 [52]
Polyvinyl chloride (unplasticized) 0.045 0.16 [52]

Nylon 6 0.038 0.16 [51,52]
Polyethylene terephthalate 0.035 0.17 [52]

Polyvinylidene chloride 0.0053 0.029 [52]
Polymethacrylonitrile 0.0012 0.0032 [52]

Polyacrylonitrile 0.0003 0.0018 [52]

Units: Barrer- cm3 (STP).cm/(sec.cm2.cmHg × 1010)

Kim et al. [50] have shown that other fluoropolymers with better processability, such
as PVDF and P(VDF-co-HFP), can be processed into membranes with target pore size.
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Apart from these options, many possible possibilities exist in the realm of fluoropolymers,
yet to be explored for artificial lung membranes.

2.1.3. Current Challenges and Research Direction

It has been clinically proven that the artificial lung treatment can increase the survival
rate of lung failure patients [54]. Despite such improvements, many challenges remain
to further improve the survival rate and quality of life of the patients. Future membrane
research must focus on three fronts: (1) better hemocompatibility, (2) better module design
with lower prime volume, and (3) smaller and more portable systems.

Blood Compatibility (Hemocompatibility)

The concept of blood compatibility, or hemocompatibility, has been one of the most
daunting challenges in the field of biomaterial research. In spite of 50 years of intensive re-
search, biomaterial researchers even coined the term “blood compatibility catastrophe” [55]
to show that there is no consensus as to which materials are even “blood compatible.” The
term biocompatibility is a broader concept that includes hemocompatibility, and these two
terms are often used interchangeably in the blood-contacting materials literature.

Inside an artificial lung membrane module, the blood comes in contact with the mem-
brane (among other parts), and the proteins inside the blood, such as albumin, fibrinogen,
fibronectin, and many others, immediately bind to the surface. As illustrated in Figure 7,
the initial adsorption step sets off cascades of complex immune response and blood clot
formation (e.g., thrombosis) processes [18,56–58]. Hence, the protein–material interaction
is an important indicator of hemocompatibility.

The key issues in artificial lung membranes are the formation of blood clots and
inflammatory response. These mechanisms, although vital for our survival, can cause a
variety of adverse issues during clinical treatments. Particularly, blood clots can block the
blood pathway and dramatically lower the oxygenation efficiency. Current state-of-the-art
artificial lung membranes can last for a few weeks before blood clots (thrombosis) adversely
affect patients [59–61].
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As the protein adsorption is the first step that initiates both the blood coagulation
pathway and the inflammatory response [63], many works have focused on minimizing the
protein adsorption onto blood-contacting devices [50,64–67]. Generally, proteins bind to a
surface via hydrophobic interaction, and hence the hydrophilic modification of a surface
effectively lowers the protein adsorption, which in turn improves the hemocompatibil-
ity [62]. However, artificial lung membranes require hydrophobic properties to avoid pore
wetting and plasma breakthrough. This is precisely the reason why the current artificial
lung membranes are mostly based on hydrophobic materials such as PP and PMP.

Another strategy to prevent the protein adsorption, particularly for artificial lung
membranes, is to minimize the surface energy. It has been shown that the amount
of protein adsorption is inversely proportional to the membrane surface energy [50].
Figure 8 clearly shows that a fluorinated surface, although hydrophobic, can effec-
tively prevent protein adsorption and potentially improve the hemocompatibility.
Hence, fluorinated polymers could be a promising alternative to the current PP and
PMP materials.
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Protein adsorption can be further inhibited with super liquid-repellent surfaces, also
known as superamphiphobic surfaces [50,67–70]. The superarmphiphobic surface can
only be realized with appropriate surface roughness modification and surface energy
modification. The first step is to implement the right roughness with nanostructures in
order to create the capillary force at the blood–surface interface [71–73]. The nanostructure
creates an air gap between the liquid and the surface of the material, transforming the
surface from the Wenzel state to the Cassie–Baxter state [71,74–80] (Figure 9). There are
many ways to fabricate nanostructures, such as spray particle coating [57,81–83] or etching
methods (plasma, laser, chemical, and electrochemical etching) [71,78,84–91].
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To realize a superamphiphobic surface, the surface energy must also be minimized in
tandem, typically using fluorochemicals. The most commonly used ones are fluorocarbon-
based compounds, (-CF2-)n, where n is between 4 and 10. These perfluorochemicals exhibit
extremely low surface energy but can be toxic to the environment and health [92], and
cannot be applied for healthcare materials. Alternative perfluorochemicals are being sought
which are safer but with similar low surface energy characteristics [92]. The lowest surface
energy reported is 9.3 mN/m using fluorinated polyhedral oligomeric silsesquioxanes
(POSS) [93].

Apart from controlling the protein adsorption, hemocompatibility can be achieved
by controlling other factors within the blood physiology. For example, blood coagulation
cascades can be inhibited using nitric oxide (NO) [94] or by coating heparin derivatives [95].
Coating the membrane with phosphorylcholine (PC) compound has also been reported to
decrease thrombosis [96–98]. A considerable reduction of platelet adhesion was reported
when coating the membrane with poly(2-methoxyethylacrylate) (PMEA) [99,100]. One
of the most promising methods is to form a thin endothelial cell layer on the membrane
surface to mimic the actual blood vessels. Hypothetically, a monolayer of endothelial cells
on membranes can achieve complete hemocompatibility [101]. Many interesting pieces of
research have been carried out [101–107], but its efficacy and clinical safety must be proven
before it can be implemented in commercial products.

Despite several decades of hemocompatible research, it is as yet difficult to obtain
membranes that can completely avoid blood coagulation and inflammation. In fact, this
challenge is not only in the artificial lung field, but in the entire discipline of blood-
contacting biomaterials. Many promising developments are being reported but have yet to
be implemented into artificial lung technology.

Improving Blood Oxygenation Efficiency

The performance of current commercial ECMO modules is summarized in Table 5. It
can be seen that there is still a wide gap between the oxygenator membrane performance
and that of human lungs (Table 1). There are several ways to improve the oxygenator
membrane performance. First, the blood oxygenation efficiency can be improved by
optimizing the blood’s fluid dynamics within the module. Many articles reported different
strategies for better module designs [39,108–112]. Most of the blood oxygenator modules
are designed with hollow fiber bundles with the blood flowing outside the fiber membranes.
In this way, the contact area and the gas transfer efficiency of the artificial lung can be
maximized [39,109]. In order to avoid unwanted blood trauma due to shear flow [113],
computational fluid dynamics (CFD) tools have been applied to optimize the module
design and to improve the ECMO performance [110,112,114,115].
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Table 5. Specifications of current commercial hollow fiber membrane blood oxygenator devices.

Device Capiox FX Affinity NT Quadrox Vision Vital Eurosets Hilite Hilite LT

Company Terumo Medtronic Maquet Gish Biomedical NIPRO Eurosets Medos Medos

Membrane
materials PP PP PP PP PP PMP PP PMP

Membrane area,
m2 0.5–2.5 2.5 1.8 2.45 2 0.69–1.81 0.39–1.9 0.32–1.9

Priming volume,
ml 43–260 270 250 280 180 90–225 57–275 55–275

Blood flow, L/min 0.1–7 1–7 0.5–7 1–8 0.5–7 0.2–7 1–7 0.8–7

O2 transfer rate,
mL/min 50–500 50–400 Max 425 400 _ 90–350 _ 100–550

CO2 transfer rate,
mL/min 50–500 50–400 Max 320 200–500 _ 70–300 _ 75–350

Coating materials X coating
(nonheparin)

Balance biosurface
(heparin-free) SOFTLINE coating

GBS coating
(nonleaching

heparin coating)
_ Phosphorylcholine Uncoated/ x.eed/

rheoparin
Uncoated/
rheoparin
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Secondly, the prime volume, or the amount of extracorporeal blood, must be mini-
mized. Simultaneously, the contact area and contact time with foreign materials must also
be minimized to improve the blood hemostasis. One obvious strategy is to minimize the
hollow fiber thickness (100 µm) similar to that of alveolus thickness (2 µm), but materials
with strong enough mechanical properties must be developed. Theoretically, this strategy
could lower the prime volume quite significantly.

Apart from the hollow fiber membrane modules, other types of artificial lung are being
developed, such as paracorporeal, introthoracic and intravenous artificial lungs [116–119],
some reaching clinical trials [120]. In particular, microfluidic devices are now considered as
the most promising artificial lung platform for the future [121–127]. Mostly fabricated with
PDMS material, the membrane thickness can be controlled within 6 to 130 µm [128], and the
oxygen exchange rate can reach as high as 329 mL·min−1·m−2 [129] (Figure 10). In addition,
the blood paths can be customized to maximize the contact area and residence time.

However, main challenges of the microfluidic artificial lung are, again, related to
hemocompatibility [128]. Additionally, although the photolithographic fabrication step can
be cumbersome, the recent development of the PDMS fabrication technique could lead to a
breakthrough [130].
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Wearable and Implantable Artificial Lung

To improve the quality of life of lung-failure patients, the device must become smaller
and more portable. For instance, a wearable or implantable artificial lung could be a
preferred treatment. Several different types of such devices have been reported. In 2012,
researchers reported results on a wearable artificial lung, tested with sheep for 30 days
with stable oxygen saturation levels [132]. In 2019, a paracorporeal ambulatory assist
lung (PAAL) was tested with sheep for six hours [133] and for five days [134]. Another
wearable ECMO device, compliant thoracic artificial lung (cTAL), was tested on sheep for
14 days [135]. Additionally, intravenacaval oxygenator and carbon dioxide removal device
(IVOX) [136] and the Hattler respiratory gas exchange catheter [137] were also reported
but these artificial lungs failed during clinical tests. The wearable and implantable artificial
lung devices are still in the early stages of development. Expectedly, the main challenge
is the hemocompatibility of the materials. In order to achieve safety over the long-term,
better understanding of the blood–material interaction is required.

2.2. Artificial Kidney and Blood Purification

The kidneys are bean-shaped organs in the renal system, located on both sides of
the lower spine. They are made up of nephrons that act as a physical filter to remove
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biological waste and excess water from the blood to maintain homeostasis. In addition,
human kidneys perform biological roles, such as hormone production, to make new red
blood cells (erythropoietin), to promote bone health, and to regulate blood pressure. These
biological roles cannot be augmented with membrane technology yet.

In the case of kidney failure, the patient must be treated with artificial kidney tech-
nology at least twice a week for blood purification. The artificial kidney, also known as
the dialyzer (Figure 11), is one of the most important technologies that helps millions
of people around the world. The term “dialyzer” was first coined in the middle of the
19th century [138], but the first real success in prolonging a patient’s life was reported in
1945 [139]. Since then, artificial kidney membranes underwent tremendous improvements
in treating renal diseases (i.e., kidney failures). After many module designs, such as coil
and plate types, the current state-of-the-art artificial kidney membranes are mostly in the
form of hollow fiber modules.
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One of the key roles of artificial kidney is to purify blood, also known as extracorporeal
(e.g., outside the body) blood purification, and it can be further classified as hemodialy-
sis (HD), hemofiltration (HF), and hemodiafiltration (HDF). As illustrated in Figure 12,
hemodialysis is a blood purification method that requires a separate dialysate stream, and
toxins are extracted from the blood into the dialysate stream via natural diffusion down
the concentration gradient. Normally, the MWCO (molecular weight cut off) of dialyzer
membranes is from 3000 Da to more than 15 kDa [140,141]. In recent times, the super high
flux dialyzer membrane can have a MWCO of around 65 kDa [142]. It is interesting to note
that dialysate production occupies a considerable market portion of the reverse osmosis
membranes, as ultrapure water is required to make the dialysate solution.
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Hemofiltration is similar to hemodialysis, but a transmembrane pressure is applied
across the membrane to push the waste solutes and water through the membrane. Unlike
hemodialysis, hemofiltration does not require a dialysate stream, but a substitution fluid is
used to make up the lost blood volume. Additionally, as the applied pressure induces liquid
convection through the membrane, hemofiltration can permeate large solutes faster than
hemodialysis [143]. On the other hand, hemodiafiltration is a hybrid of the hemodialysis
and hemofiltration methods. This method can improve the permeance by applying the
pressure gradient and increase the performance of the membrane [144].

Currently, there are many different types of polymers to fabricate dialysis membranes,
and it can be divided into five different groups—namely, cellulose derivatives, polysulfone
derivatives (PSU), polyacrylontrile (PAN), polymethylmethacrylate (PMMA) and ethyl-
vinyl-acetate copolymer (EVAL).

The first group is the cellulose derivatives. Most of the hemodialysis membranes
were made from cellulose materials in the early days (around 1950) of artificial kidney
technology. In 1985, Henderson et al. [145] published an article which reported concerns
over the blood biocompatibility of the regenerated cellulose membranes used for artificial
kidneys [145]. This paper initiated researchers searching for new biomaterials with higher
biocompatibility to apply in dialysis membranes. Nowadays, synthetic membranes with
better biocompatibility have mostly replaced the cellulosic membranes. As of 2016, syn-
thetic membranes such as polysulfone (PSU), polyethersulfone (PES), PAN, PMMA and
EVAL make up 95% of the dialysis membrane market share [9]. Interestingly, acetylated
cellulose polymers, such as cellulose triacetate (CTA), exhibit reasonable biocompatibil-
ity [146] and hence still hold 5% of the dialysis membrane market [147].

The second group is the polysulfone-based polymers such as polysulfone (PSU) and
polyethersulfone (PES), and they currently dominate the hemodialysis market. PSU-
based dialysis membranes are proven to have higher biocompatibility and better clinical
performance. Long years of research have shown that a delicate balance is required between
hydrophilic and hydrophobic properties to obtain adequate biocompatibility. As PSU
polymers are intrinsically hydrophobic, researchers have blended polyvinylpyrrolidone
(PVP) additives to increase the PSU membrane hydrophilicity, and its positive effect on
biocompatibility have been clinically proven [148].

The third group, PAN dialysis membranes were first reported in 1972 by the Rhone-
Poulenc company as “AN69” with high flux. The AN69 was made with PAN and hy-
drophilic sodium-meth-allyl-sulfonate additives with high biocompatibility [149]. The
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fourth group is PMMA hemodialysis, which is known as a biocompatible adsorbent mem-
brane [150]. PMMA membranes show excellent adsorption of biological middle molecule
(β2 microglobulin) at the wall and the inner surface of membranes [150]. Lastly, EVAL and
EVOH polymers are promising dialysis materials with remarkable blood compatibility,
based on their strong hydrophilic properties. Notably, protein adsorption onto the EVAL
membrane is extremely slow [151].

The cell-free artificial kidney system has been employed for a long time, and the
basic principle of the dialysis system is to eliminate the toxins from the blood using a
membrane. However, this system cannot replace the endocrine, homeostatic, metabolic
and regulatory functions of the human kidney (biological and chemical functions). Hence,
researchers have tried to combine the polymeric membranes with kidney cells, known
as the bioartificial kidney (BAK). The first BAK prototype was presented in 1987 [152].
A BAK device is composed of two parts (Figure 13): a hemofiltration device and a renal
tubule assist device (RAD). A patient’s blood is first separated by a hemofilter into the
blood and the ultrafiltrate streams. Then, both streams enter the RAD, where the valuable
components in the ultrafiltrate are reabsorbed into the bloodstream. A hollow fiber module
incorporating renal cells is used. The commonly employed polymers are PSU [153,154],
PAES [154] and PES [155].
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The source of renal cells can be from porcine [156,157], canine [158] or human renal
cells [153–155]. More recently, 3D printing technologies were applied to mimic a more
kidney-like structure [159] in combination with the microfluidic technology [160]. On
the other hand, wearable artificial kidney (WAK) devices are actively being developed to
improve the quality of life of the patients while reducing the financial burden of long-term
treatments [161–163]. An ideal WAK devices should weigh under 8 kg and the total volume
should be less than 0.1m3 [164]. Several urea removal strategies have been reported in the
WAK such as sorbents [165], photo-oxidation [166] and electro-oxidation [167]. An exciting
work that applies artificial intelligence (AI) techniques to improve dialysis therapy has been
reported by real-time feedback responses and life and death making decisions [168,169].

2.3. Artificial Liver

The liver is a multifunctional organ with more than 200 functions that is essential for
survival. It is the largest internal human organ, weighting about 1.5 kg, and is composed
mostly of hepatocytes (liver cells). The liver performs many essential metabolic functions,
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along with nutrient storage, blood detoxification, plasma protein synthesis, and hormone
control [170].

Liver failure can be acute and/or chronic, and it can occur due to many reasons;
common causes are the ingestion of a toxic substance, medicine, drug overdose, alcohol
consumption, and viral hepatitis. Liver damage can lead to a variety of life-threatening
physiologic and metabolic abnormalities like hemorrhage, hypoglycemia and hyperam-
monemia [171]. Fortunately, the liver is one of the unique organs that can regenerate, and it
can recover itself from minor damages (e.g., binge drinking). However, as the roles of liver
are primarily biochemical functions requiring hepatocytes, the most effective treatment for
severe liver failure patients is, again, organ transplantation.

Researchers have tried to develop various artificial liver support devices for liver
failure patients. The current liver support systems can be divided into two main types:
(1) nonbiological artificial liver systems that augment the blood detoxification role of the
liver, and (2) bioartificial liver with hepatocytes that can also augment the biological roles.

The first type is the conventional artificial liver support which is a nonbiological
membrane system—that is, without any cellular (hepatocyte) functions. Its main role is to
augment liver detoxification function. To achieve blood homeostasis, two different classes
of blood toxins must be removed from the body. There are low MW hydrosoluble toxins
such as urea and ammonia. These toxins can be effectively removed by the kidneys or by
hemodialysis. On the other hand, there are protein-bound toxins that are too big to be
removed by kidney or hemodialysis. These protein-bound toxins must be treated by the
liver prior to excretion.

Some of the biological waste toxins (e.g., bilirubin, aromatic amino acids, endotoxins,
etc.) are hydrophobic and sparingly soluble in blood plasma. These toxins in the blood
are transported to the liver as protein-bound, mostly bound to albumin proteins. It is
important to note here that albumin is the most abundant protein in the blood plasma with
many important roles including osmotic pressure control and toxin scavenging.

Particularly, bilirubin is a chemical compound produced during the breakdown of old
red blood cells. The produced bilirubin binds to albumin in the blood, and is transported
to the liver, where it becomes conjugated with glucuronic acid, after which it can be
degraded and excreted. The blood bilirubin concentration is commonly considered as an
important marker for liver malfunction, as high bilirubin concentration can lead to hepatic
encephalopathy (brain damage), or coma. Hence, the main objective of the current artificial
liver systems is to eliminate these albumin-bound toxins in the blood, as this is the most
urgent issue in the event of liver failure.

From membrane engineering perspective, the challenge is the difficulty in discrimi-
nating the albumin-bound toxins from other important chemicals inside the blood. These
toxins (e.g., bilirubin and tryptophan) are strongly bound to albumin proteins, and albumin
itself should not be removed from the bloodstream for homeostasis. The MW of albumin
is approximately 69 kDa. It is possible to simply replace the entire plasma (plasmaphere-
sis), but it is not practical as it requires large amounts of fresh plasma continuously [172].
Additionally, the blood can be pushed through an absorbent column (hemoperfusion) to
remove toxins but this is relatively nonspecific (low selectivity) and it can inadvertently
remove other important biomolecules in tandem [173].

Currently, two different strategies have been developed (Figure 14). The first strategy,
known as MARS (molecular absorbent recirculation system), was first applied in 1996 and
it utilizes a technique called albumin dialysis [174]. Although bilirubin exists as albumin-
bound form in the blood plasma, it is strictly in thermodynamic equilibrium between the
free bilirubin form and albumin-bound bilirubin form. Hence, the only way to selectively
push free bilirubin through a membrane is by circulating highly concentrated free albumin
(unbound) solution on the dialysate side of the membrane, as illustrated in Figure 14.
Generally, 20 wt% albumin (unbound) solution is used as the dialysate. Hence, due to the
free albumin concentration gradient, bilirubin unbinds itself from blood plasma albumin,
diffuses through the membrane, then subsequently binds to a free albumin in the dialysate
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solution. For this process, a conventional hemodialysis membrane (albumin-impregnated)
is used with MWCO of 50~60 kDa. Hence, this membrane blocks albumin permeation
while allowing bilirubin (MW of 584 Da) to permeate freely.
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The driving force for bilirubin permeation is purely by the concentration gradient of
the free albumin across the membrane. Hence, the phase equilibria of the albumin–toxin
systems must be understood. It has been reported that the binding constants (Keq) for biliru-
bin and tryptophan, two of the most problematic liver failure toxins, are 107 L/mole [175]
and 104 L/mole [176], respectively. These values indicate that basically all bilirubin and
tryptophan molecules exist as albumin-bound form. Therefore, the toxin removal efficiency
is primarily a function of albumin dialysate concentration.

The albumin dialysate solution circulates around a loop and albumin is regenerated
using two adsorption columns, mostly with an activated carbon column to adsorb un-
charged toxins (e.g., tryptophan), and an anion exchange column to remove negatively
charged compounds (e.g., bilirubin). Apart from bilirubin, other low MW compounds also
permeate the MARS membrane into the albumin dialysate solution. Such compounds are
then removed in the second dialysis membrane (Figure 14). Hence, MARS also performs
artificial kidney functions, but not as effectively. This system can only last about 6–8 hours,
after which the adsorption columns must be replaced.

Another strategy of artificial liver system is called Prometheus, or FPSA (Fractionated
Plasma Separation and Adsorption), first proposed in 1999 [177] and clinically commer-
cialized in 2003 [174]. The key difference of this process compared to MARS is the use of
a loose polysulfone membrane with MWCO of about 250 kDa (MARS employs a 65 kDa
membrane). Instead of using albumin dialysate, the membrane allows the toxin-bound
albumin proteins in the blood to selectively permeate. The albumin filtrate is then treated
with adsorption resins to regenerate the albumin (toxin removed). The regenerated albu-
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min stream is then recombined with the blood, and the bloodstream is further dialyzed
with a conventional hemodialyzer.

The clinical data for the MARS and Prometheus systems showed that the treatments
clearly improve the biochemical homeostasis (e.g., bilirubin concentration), but unfortu-
nately these treatments did not improve the survival rate of the patients [178,179]. Such
an outcome may be because the liver performs many other important functions besides
maintaining blood homeostasis. Hence, simply augmenting the blood detoxification role
of the liver cannot guarantee the patient’s survival. Liver failure almost always leads to
multiorgan failures which are, currently, difficult to predict and to treat. From membrane
performance perspectives, the use of facilitated transport membranes can be applied to the
MARS system to enhance the toxin removal rate, and membranes with better selectivity
between albumin and fibrinogen could improve the Prometheus performance.

There are also other artificial liver systems such as SPAD [180], and SEPET [9]; however,
conventional artificial liver systems have clear limitations and their role is primarily to
temporarily treat acute liver failure patients. These treatments cannot be applied in the
long-term for severe liver failure patients. Hence, future research must focus on bioartificial
liver (BAL) systems with hepatocytes that can also perform the biological roles of the liver,
such as regulation and synthesis.

A BAL system combines the membrane technology with a compartmentalized biore-
actor that contains hepatocytes (Figure 15). The key role of the membrane in BAL is
to protect the hepatocytes (foreign source) from the immune system. The membrane
needs to prevent blood immune cells from passing through the membrane, while allowing
other biomolecules and nutrients to permeate and come into contact with the hepatocytes;
however, it should be noted that the membrane itself can also initiate the immune re-
sponse and blood coagulation [181,182], and necessary measures (anticoagulation) must be
implemented. Again, hemocompatibility is the key challenge.

Many BAL systems have been tested, such as ELAD (Extracorporeal Liver Assist
Devices) [183], BLSS (bioartificial liver support system) [184], and BIOLIV A3A [185].
Although considerable improvements have been made, BAL systems are still in early stages
of development with countless challenges. The development of BAL is very challenging as
many parameters must be considered simultaneously, such as hepatocyte source, bioreactor
design, immune response, and blood homeostasis. In addition, many difficult challenges
must be overcome from the bioreactor component as well.

From the membrane perspective, the rate of mass transfer of biomolecules through
the membrane must be controlled to maintain hepatocyte survival and cellular metabolism,
while effectively suppressing the immune response and blood coagulation. Hence, mem-
brane properties such as the pore size, surface charge, and wettability must be optimized for
this purpose [186,187]. The current BAL membranes are fabricated from rather conventional
materials such as polysulfone [188–191], cellulose [192], and cellulose acetate [193,194].
Ideally, more application-specific materials must be developed.
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2.4. Bioartificial Pancreas

The primary role of the pancreas is to maintain glucose homeostasis in the blood by
controlling the concentration of endocrine hormones (e.g., insulin and glucagon). Pancreas
failure can lead to diabetes, one of the most well-known diseases in the world. Upon
pancreas failure, the body loses control of its insulin production, causing various types of
diabetes. Type 1 diabetes, which mostly occurs in young children, is caused by a pancreas
disorder where insulin production cannot meet the body’s demand. On the other hand,
type 2 diabetes, which is much more prevalent in adults, occurs when the body develops
insulin resistance and the blood sugar level remains high for prolonged periods.

There are several treatment methods to control the sugar levels and insulin concentra-
tions for patients with the type 1 diabetes. The method can range from simple injection
of the required insulin to cutting-edge islet (pancreatic cell) transplantation technology.
Instead of the transplantation of the whole pancreas, only the islet (pancreas) cells can be
transplanted from the donor, known as the Clinical Islet Transplantation (CIT) [195]. The
CIT technology has been improving, with its five-year success rate increasing from only
15% to approximately 60% [196–199].

The bioartificial pancreas (BAP) technology, similarly to BAL, combines membrane
technology with islet cell transplantation technology. A BAP consists of islet cells en-
capsulated within a semipermeable membrane capsule that acts as an immune system
barrier [200,201].

An ideal BAP needs to meet the following requirements: (1) segregate and protect the
islet cells from the immune system; (2) allow glucose, nutrients and oxygen to permeate,
so that the response time to blood glucose level is minimized; (3) exhibit high hemocom-
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patibility with minimal inflammatory response by the host body to ensure prolonged use
inside the body; (4) easily implantable and retrievable in case of failures.

As illustrated in Figure 16a, the capsule that encapsulates the islet cells is a semiper-
meable membrane which can protect the islet cells from immunoglobin while providing
the necessary nutrients, oxygen and glucose to the cells. The smallest immunoglobin, IgG,
has a MW of 150 kDa [202]. Hence, the optimal membrane MWCO (or pore size) to achieve
these objectives is around 50-150 kDa (of course, solute MW alone cannot and should not
be the sole factor that determines the selectivity).
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Depending on the size and type of islet cells, there are three types of islet encapsulation:
macroencapsulation (10–100 mm), microencapsulation (0.2–1 mm), and nanoencapsulation
(<0.1 mm) (Figure 16b). Macroencapsulation devices can be further classified into two
different types—intravascular and extravascular—depending on the implant position.
The intravascular device consists of islet cells encapsulated in hollow fiber membranes,
implanted directly into the patient’s cardiovascular system. The extravascular device is
mostly implanted in the peritoneal cavity of the patient.

There are various types of membrane materials applied for the intravascular devices
(Table 6) such as polyacrylontrile-polyvinylchloride (PAN-PVC) copolymer, polycarbon-
ate, EVAL fibers, poly-animo-urethane, nonwoven PTFE fabric and nylon microporous
membrane to encapsulate the islet cells [203–206].

As for the extravascular devices, inorganic materials have been reported, such as sil-
ica [207], aluminum/aluminum oxide [208,209] and titanium/titanium oxide [209]. How-
ever, the use of inorganic membranes for BAP is still relatively new and has not been
clinically proven. Polymeric membranes are more widely used to encapsulate the islet cells
(Table 6). Current membrane permselectivity is poor; it must be improved to decrease the
insulin-release time delay.
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Table 6. Polymeric membranes were applied for intra/extravascular microencapsulation devices.

Type of devices Material Islet source Model for Ref.

Intravascular PAN-PVC Rat, Monkey Rat, Monkey [203]
Polycarbonate Rat Dog [204]

EVAL fibers
Porcine Pig [205]Poly-animo-urethane-coated

Nonwoven PTFE fabric
Nylon Rabbit fetuses Human [206]

Extravascular Nitrocellulose acetate Mice Mice [210]
2-Hydroxyethyl methacrylate Rat, Rabbit Rat [211]

Cellulose acetate Human Rat [212]
Acrylic copolymer Rat Mice [213]

Acrylonitrile (AN62) Rat Rat [214]
Polysulfone Rat In vitro [215]

3. Summary and Conclusions

Artificial organ (AO) technology has become an indispensable tool for the treatment
of organ failures. As summarized in this review, there have been incredible strides in
many of AO devices that employ membrane technology including lung, kidney, liver,
and pancreas. Every organ has its own unique functions, and the membrane must be
tailor-developed for each organ. It is important to reiterate that the key bottleneck in
membrane-based AO technology is not the permselectivity of the membrane (although
better performance is still desired), but the hemocompatibility of the membrane material
at the blood–material interface. The strategy to achieve better hemocompatibility must
also be tailor-developed for each organ, as the requirements for kidney and lungs, for
example, can be drastically different. In addition, particularly for artificial lungs, effective
module design to improve the mass transfer coefficient is the most important parameter.
Additionally, the development of a hemocompatible superamphiphobic membrane could
be an important breakthrough. Unfortunately, only the physical functions of human organs
can be partly augmented with the membrane technology. Bioartificial organ technology,
which incorporates live cells, has been improving to replace the biochemical aspects of
failed organs. Future research must focus on developing better bioartificial organs, precisely
controlling the selective permeation of solutes in and out of the membrane to suppress
the unwanted immune response. Additionally, future AO research needs to improve
the well-being and quality of life of organ failure patients, until bridge-to-recovery or
bridge-to-transplantation.
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Abbreviations

Abbreviation Full Name
AI Artificial intelligence
AN62 Acrylonitrile
AO Artificial organ
BAK Bioartificial kidney
BAL Bioartificial liver
BAP Bioartificial pancreas
BLSS Bioartificial liver support system
CFD Computational fluid dynamic
CIT Clinical islet transplantation
CPB Cardiopulmonary bypass system
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Abbreviation Full Name
CTA Cellulose-triacetate
cTAL Compliant thoracic artificial lung
ECMO Extracorporeal membrane oxygenation
ELAP Extracorporeal liver assist device
EVAL Ethyl-vinyl-acetate copolymer
FPSA Fractionated plasma separation and adsorption
GPU Gas permeation unit
HD Hemodialysis
HDF Hemodiafiltration
HF Hemofiltration
HF Hollow fiber
HFP Hexafluoropropylene
IVOX Intravenacaval oxygenator and carbon dioxide removal device
MARS Molecular adsorbent recycling system
MW Molecular weight
MWCO Molecular weight cut-off
NIPS Nonsolvent induced phase separation
N-TIPS Nonsolvent-thermally induced phase separation
P(VDF-CO-HFP) Poly(vinylidene fluoride)-co-hexafluoropropylene
PAAL Paracorporeal ambulatory assist lung
PAES Polyarylethersulfones
PAN Polyacrylontrile
PAN-PVC Polyacrylontrile-polyvinylchloride
PC Phosphorylcholine
PDMS Polydimethylsiloxane
PES Polyethersulfone
PMEA Poly(2-methoxyethylacrylate)
PMMA Polymethylmethacrylate
PMP Poly-4-methylpentence
POSS Polyhedral oligomeric silsesquioxanes
PP Polypropylene
Psu Polysulfone
PTFE Polytetrafluoroethylene
PVDF Poly(vinylidene fluoride)
PVP Polyvinylpyrrolidone
RAD Renal tubule assist device
SEPET Selective plasma filtration therapy
SPAD Single-pass albumin dialysis
TIPS Thermally induced phase separation
WAK Wearable artificial kidney
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