Effect of the Characteristic Properties of Membrane on Long-Term Stability in the Vacuum Membrane Distillation Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of PVDF Membrane
2.2.1. Fabrication of PVDF Hollow Fiber Membrane
2.2.2. Preparation of Membrane Modules
2.2.3. Hydrophobic Treatment
2.3. Characterization of PVDF Membrane
2.3.1. Pore Size Distribution and Porosity
2.3.2. LEP Measurement
2.3.3. Polymer Composition of Membrane Surface
2.3.4. VMD Evaluation
3. Results and Discussion
3.1. Membrane Morphology
3.2. Evaluation of Physical Properties of Membranes
3.3. VMD Performance
3.3.1. VMD Performance of Lab-Scale Module
3.3.2. Scale-up and Long-Term Operation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Symbols | Description | Units |
A | Total membrane bore surface area | m2 |
Cf | Salt concentration in feed water | wt% |
Cp | Salt concentration in permeated water | wt% |
Cp0 | Accurate salt concentration of permeated water | wt% |
Cw | Salt concentration in washing water | wt% |
Jsp | Leaking salt flux into permeated water | g/m2·h |
Jsr | Leaking salt flux remaining on shell surface of membrane | g/m2·h |
Jst | Total leaking salt flux | g/m2·h |
Jw | Water vapor flux | kg/m2·h |
mp | Weight of salt in permeated water | kg |
mr | Weight of salt remaining on shell surface of membrane | kg |
mp0 | Weight of total permeated salt | kg |
rF | Salt retention factor | % |
T | Operating time | H |
Wp | Weight of permeated water | kg |
Ww | Weight of washing water | kg |
References
- Nancy, A.E.; Eleonora, C.; Massimo, G.; Chiara, T. The future of science: Food and water for life. Plant Cell 2009, 21, 368–372. [Google Scholar]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Drioli, E.; Ali, A.; Macedonio, F. Membrane distillation: Recent developments and perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Al-Obaidani, S.; Curcio, E.; Macedonio, F.; Di Profio, G.; Al-Hinai, H.; Drioli, E. Potential of membrane distillation in sea-water desalination: Thermal efficiency, sensitivity study and cost estimation. J. Membr. Sci. 2008, 323, 85–98. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewa-ble-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Daniel, G.; José, A.; Suárez, F. Membrane distillation: Perspectives for sustainable and improved desalination. Renew. Sustain. Energy Rev. 2017, 80, 238–259. [Google Scholar]
- Goodarzi, S.; Javaran, E.J.; Rahnama, M.; Ahmadi, M. Techno-economic evaluation of a multi effect distillation system driv-en by low-temperature waste heat from exhaust flue gases. Desalination 2019, 460, 64–80. [Google Scholar] [CrossRef]
- Zarzoum, K.; Zhani, K.; Ben Bacha, H.; Koschikowski, J. Experimental parametric study of membrane distillation unit using solar energy. Sol. Energy 2019, 188, 1274–1282. [Google Scholar] [CrossRef]
- Nagata, K. Introduction of membrane distillation technology. Pharm. Tech. Jpn. 2016, 32, 61–64. [Google Scholar]
- Khayet, M.; Matsuura, T. Membrane Distillation: Principles and Applications in Membrane Distillation. Amsterdam 2011, 249–293. [Google Scholar]
- Santoro, S.; Vidorreta, I.; Coelhoso, I.; Lima, J.C.; Desiderio, G.; Lombardo, G.; Drioli, E.; Mallada, R.; Crespo, J.; Criscuoli, A.; et al. Experimental Evaluation of the Thermal Polarization in Direct Contact Membrane Distillation Using Electro-spun Nanofiber Membranes Doped With Molecular Probes. Molecules 2019, 24, 638. [Google Scholar] [CrossRef] [Green Version]
- Janajreh, I.; El Kadi, K.; Hashaikeh, R.; Ahmed, R. Numerical investigation of air gap membrane distillation (AGMD): Seek-ing optimal performance. Desalination 2017, 424, 122–130. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, J.; Gray, S.; Li, J.D. Experimental study of hollow fiber permeate gap membrane distillation and its perfor-mance comparison with DCMD and SGMD. Sep. Purif. Technol. 2017, 188, 11–23. [Google Scholar] [CrossRef]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. I. Module design and performance evaluation using vacuum membrane distillation. J. Membr. Sci. 1996, 120, 111–121. [Google Scholar] [CrossRef]
- Abu-Zeid, M.A.E.-R.; Zhang, Y.; Dong, H.; Zhang, L.; Chen, H.-L.; Hou, L. A comprehensive review of vacuum membrane distillation technique. Desalination 2015, 356, 1–14. [Google Scholar] [CrossRef]
- Nagata, K.; Arai, H. Membrane Distillation Apparatus and Hydrophobic Porous Membrane. International Publication No. WO2016/006670, 14 January 2016. [Google Scholar]
- Hashimoto, T.; Arai, H.; Nagata, K.; Kubota, N.; Takezawa, H.; Otoyo, T. Porous Membrane for Membrane Distillation, and Method for Operating the MD Module. International Publication No. WO2018/174279A1, 27 September 2018. [Google Scholar]
- Fang, C.; Jeon, S.; Rajabzadeh, S.; Fang, L.; Cheng, L.; Matsuyama, H. Tailoring both the surface pore size and sub-layer structures of PVDF membranes prepared by the TIPS process with a triple orifice spinneret. J. Mater. Chem. A 2018, 6, 20712–20724. [Google Scholar] [CrossRef]
- Song, Z.; Xing, M.; Zhang, J.; Li, B.; Wang, S. Determination of phase diagram of a ternary PVDF/c-BL/DOP system in TIPS process and its application in reparing hollow fiber membranes for membrane distillation. Sep. Purif. Technol. 2012, 90, 221–230. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, X.; Wu, C.; Zhang, Q. Flux enhancement in membrane distillation by incorporating AC particles into PVDF polymer matrix. J. Membr. Sci. 2016, 500, 46–54. [Google Scholar] [CrossRef]
- Tong, D.; Wang, X.; Ali, M.; Lan, C.Q.; Wang, Y.; Drioli, E.; Wang, Z.; Cui, Z. Preparation of Hyflon AD60/PVDF composite hollow fiber membranes for vacuum membrane distillation. Sep. Purif. Technol. 2016, 157, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Sun, D.; Miao, X.; Gu, Y. SiO2-PDMS-PVDF hollow fiber membrane with high flux for vacuum membrane distillation. Desalination 2018, 429, 33–43. [Google Scholar] [CrossRef]
- Simone, S.; Figoli, A.; Criscuoli, A.; Carnevale, M.; Alfadul, S.; Al-Romaih, H.; Al Shabouna, F.; Al-Harbi, O.; Drioli, E. Effect of selected spinning parameters on PVDF hollow fiber morphology for potential application in desalination by VMD. Desalination 2014, 344, 28–35. [Google Scholar] [CrossRef]
- Chen, K.; Xiao, C.; Huang, Q.; Liu, H.; Liu, H.; Wu, Y.; Liu, Z. Study on vacuum membrane distillation (VMD) using FEP hollow fiber membrane. Desalination 2015, 375, 24–32. [Google Scholar] [CrossRef]
- Sun, Q.; Yang, Z.; Hu, C.; Li, C.; Yan, G.; Wang, Z. Facile preparation of superhydrophobic PVDF microporous membranes with excellent anti-fouling ability for vacuum membrane distillation. J. Membr. Sci. 2020, 605, 118106. [Google Scholar] [CrossRef]
Spinning Conditions | M-1 | M-3 |
---|---|---|
Dope solution | PVDF/Si/DOP/DBP = 23/31/6/40 | PVDF/GTA = 33/67 |
Spinneret | Double-orifice | Triple-orifice |
Melting Temp. (°C) | 240 | 190 |
Bore fluid | N2 | GTA |
Extruded solvent | None | DEP |
Length of air gap (cm) | 20 | 5 |
Take-up speed (m/min) | 20 | 20 |
Elongation rate | 150% | None |
Membrane | OD 1 | ID 2 | Thickness | Mean Pore Size | Maximum Pore Size 3 | Porosity | Contact Angle | LEP |
---|---|---|---|---|---|---|---|---|
[mm] | [mm] | [mm] | [μm] | [μm] | [%] | [°] | [MPa] | |
M-1 | 1.22 | 0.66 | 0.28 | 0.10 | 0.12 | 72 | 103 | 0.25 |
M-2 | 1.22 | 0.66 | 0.28 | 0.10 | 0.14 | 72 | 132 | 0.37 |
M-3 | 0.75 | 0.47 | 0.14 | 0.19 | 0.23 | 49 | 113 | 0.17 |
M-4 | 0.75 | 0.47 | 0.14 | 0.20 | 0.22 | 54 | 134 | 0.19 |
Membrane | Water Vapor Flux | Leaking Salt Flux | Retention Factor 6 | |||||
---|---|---|---|---|---|---|---|---|
Initial 1 | Last 2 | Last/Initial | Average 3 | Salt in Permeated Water 4 | Salt Remaining on Membrane 5 | Total | ||
[kg/m2·h] | [kg/m2·h] | % | [kg/m2·h] | [g/m2·h] | [g/m2·h] | [g/m2·h] | % | |
M-1 | 43.2 | 37.2 | 86% | 38.7 | 0.05 | 3.39 | 3.44 | 99.7% |
M-2 | 43.9 | 40.3 | 92% | 42.0 | 0.04 | 0.64 | 0.68 | >99.9% |
M-3 | 33.7 | 21.0 | 62% | 28.8 | 0.06 | 34.33 | 34.39 | 96.6% |
M-4 | 33.2 | 24.1 | 73% | 26.5 | 0.06 | 13.60 | 13.67 | 98.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suga, Y.; Takagi, R.; Matsuyama, H. Effect of the Characteristic Properties of Membrane on Long-Term Stability in the Vacuum Membrane Distillation Process. Membranes 2021, 11, 252. https://doi.org/10.3390/membranes11040252
Suga Y, Takagi R, Matsuyama H. Effect of the Characteristic Properties of Membrane on Long-Term Stability in the Vacuum Membrane Distillation Process. Membranes. 2021; 11(4):252. https://doi.org/10.3390/membranes11040252
Chicago/Turabian StyleSuga, Yuki, Ryousuke Takagi, and Hideto Matsuyama. 2021. "Effect of the Characteristic Properties of Membrane on Long-Term Stability in the Vacuum Membrane Distillation Process" Membranes 11, no. 4: 252. https://doi.org/10.3390/membranes11040252
APA StyleSuga, Y., Takagi, R., & Matsuyama, H. (2021). Effect of the Characteristic Properties of Membrane on Long-Term Stability in the Vacuum Membrane Distillation Process. Membranes, 11(4), 252. https://doi.org/10.3390/membranes11040252