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Abstract: In this study, an NaA-type zeolite membrane was prepared, and the dehydration per-
formances of the membrane were determined by the pervaporation for several organic solvents to
understand the lower dehydration performances of zeolite membranes for NMP solutions than those
for alcohols. For a 90 wt% ethanol solution at 348 K, the permeation flux and separation factor of the
membrane were 3.82 kg m−2 h−1 and 73,800, respectively. The high dehydration performances were
also obtained for alcohols and low boiling solvents (acetonitrile, acetone, methyl ethyl ketone (MEK)
and tetrahydrofuran (THF)). However, the permeation flux and separation factors decreased signifi-
cantly for high boiling solvents, such as N,N-dimethylacetamide (DMA), N,N-dimethyl formamide
(DMF), dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP). The influences of the water
content and temperature on the dehydration performances for the NMP solutions were determined
to understand the lower dehydration performances for those solvents. Those results suggest that the
lower dehydration performances for the high boiling solvents were attributed to the lower vapor
pressures of water and the higher permeances of those solvents. Furthermore, this study proposes
that the permeation behaviors through zeolite membranes could be understood by the determination
of the effect of temperature on the permeance of individual components.

Keywords: zeolite membrane; NaA-type zeolite; dehydration; N-methyl-2-pyrrolidone (NMP)

1. Introduction

Membrane separation is a promising energy-saving separation technology. In particu-
lar, zeolite membranes showed high dehydration performances for organic solvents [1–12].
It is well known that NaA-type zeolite membranes have been used for the dehydration
and concentration of biomass-derived ethanol commercially [2,5,7–11].

Okamoto et al. [6] reported that the water permeance of the NaA-type zeolite mem-
brane was independent of the concentration of ethanol for the pervaporation of water-
ethanol solution because of the selective adsorption of water. Sommer et al. [7,8] determined
the dehydration performances of the NaA-type zeolite membrane for several organic sol-
vents, such as alcohols, acetone, and tetrahydrofuran (THF), and the permeation flux were
proportional to the partial vapor pressure of water for those solvents. The high separation
performance of the NaA-type zeolite membrane is attributed to the selective adsorption of
water. In recent years, however, the low separation performances for the dehydration of
N-methyl-2-pyrrolidone (NMP) were reported by several groups [10,11].

NMP is the important solvent for manufacturing lithium-ion batteries, and the re-
cycling of NMP has attracted much attention in recent years. Although NMP does not
form the azeotrope with water, the boiling temperature is higher than those of alcohols.
Therefore, the heat of vaporization can be saved by the dehydration from the NMP solution
using the membrane. However, the permeation fluxes and separation factors of zeolite
membranes for the NMP solutions were relatively lower than those for alcohol solutions.
Zeng et al. [11] applied the NaA-type zeolite membrane to the dehydration of NMP. Their
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membranes showed the permeation flux of 1.5 kg m−2 h−1 and the separation factor of
more than 10,000 for a 90 wt% 2-propanol solution at 353 K [12]. However, the permeation
flux and separation factor for a 90 wt% NMP solution at 353 K were 0.7 kg m−2 h−1 and 240,
respectively. Sato et al. [10] developed the commercially available CHA-type zeolite mem-
brane, and the dehydration performances of the membrane were determined. Although
the membrane showed the high separation performances (separation factor = 1600) for the
2-propanol solution, that reduced to 640 for a 90 wt% NMP solution at 363 K. Recently, we
also reported similar results for a high-silica CHA-type zeolite membrane [13]. However,
the lower separation factors of zeolite membranes for NMP have not been clear.

In this study, we prepared an NaA-type zeolite membrane on a porous α-alumina
support tube, and the dehydration performances of the membrane were determined for
several organic solvents to discuss the influence of the organic solvent species on the
permeation behaviors. Furthermore, the permeation and separation mechanisms were
discussed to understand the lower separation factor for NMP.

2. Experimental
2.1. Membrane Preparation

An NaA-type zeolite membrane was prepared by the secondary growth of seed
particles on a porous α-alumina support tube [14]. The seed particles were synthesized
by the following procedures. Sodium hydroxide (FUJIFILM Wako, Tokyo, Japan) was
dissolved into a tetramethylammonium hydroxide solution (TMAOH, 25 wt%, FUJIFILM
Wako) in a plastic bottle, and aluminum isopropoxide (FUJIFILM Wako) was added to the
solution. The solution was stirred at room temperature for 1 h to hydrolyze aluminum
isopropoxide, and the solution became clear. Then, colloidal silica (Aldrich LUDOX HS-40,
St. Louis, MO, USA) was added to the solution. The molar composition of the mixture
was 6 SiO2:1 Al2O3:0.75 Na2O:5 TMAOH:110 H2O. The solution was stirred at 313 K
overnight followed by 373 K for 48 h. Solids were recovered by centrifugal separation
and washed with deionized water. The solid-liquid separation and water-washing were
repeated 5–6 times until pH of the washing water became under 9. Finally, the particles
were dispersed into deionized water to obtain the seed particle solution with the particle
concentration of 1 wt%.

The porous α-alumina tube (eSep Corp., Kyoto, Japan) was used as the support in this
study, and the properties were as follows: outer diameter = 12 mm; inner diameter = 9 mm;
length = 50 mm; mean pore diameter = 3 µm; porosity = 55%). Both the ends of the tube
were capped with silicone rubber, and the tube was impregnated into the seed particle
solution at room temperature for 1 min. The tube was dried under an ambient condition
overnight to obtain the seeded support tube after the removal from the solution.

The synthesis solution for membrane formation was prepared by mixing water glass
(FUJIFILM Wako), sodium aluminate, sodium hydroxide, and deionized water, and the
solution was stirred at room temperature for 1 h. The molar composition of the solution
was 2 SiO2:1 Al2O3:2.3 Na2O:300 H2O. The synthesis solution and the seeded support
tube were added to a Teflon-lined stainless-steel autoclave, and the autoclave was placed
horizontally in an oven at 393 K for 5 h to form a polycrystalline NaA-type zeolite layer on
the support tube by the growth of the seed crystallites. The autoclave was cooled to room
temperature after the reaction, and the recovered support tube was washed several times
using an excess amount of water. Finally, the tube was dried in an ambient atmosphere
overnight to obtain the NaA-type zeolite membrane. The membrane with the length of
5 cm was cut into 2 pieces of 1 cm long and 4 cm long membranes. The 1 cm long membrane
was used for characterization, and the other was used for the pervaporation experiments.

2.2. Characterization

The crystal structure of the membrane and particles were determined by X-ray diffrac-
tion (XRD, Rigaku Smart-Lab, Tokyo Japan), and the morphology was observed by a
scanning electron microscope (SEM, JEOL JCM-6000, Tokyo, Japan). The particle size
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distribution of the seed particles was measured by dynamic light scattering (DLS, Otsuka
Electronics Co., Ltd., ELSZ-2000, Osaka, Japan).

2.3. Pervaporation Experiments

The dehydration performances of the NaA-type zeolite membranes were determined
using a pervaporation apparatus, as shown in Figure 1 [13,15]. One end of the mem-
brane was connected to a stainless-steel tube using silicon resin, and the other end was
capped. The connection regions were covered with two kinds of thermal shrinking tubes
made of silicone rubber and Teflon. The effective membrane area for permeation was
9.5 cm2. The membrane was rinsed into the binary mixtures of an organic solvent and
water. Methanol, ethanol, 1-propanol, 2-propanol, tert-amyl alcohol, acetonitrile, ace-
tone, methyl ethyl ketone (MEK), tetrahydrofuran (THF), N,N-dimethylacetamide (DMA),
N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone
(NMP) were used as the organic solvent in this study. The total pressure of the solution
was kept at atmospheric pressure. Helium was introduced into the inner surface of the
membrane (permeate side) at 3.0 mL min−1 as the standard, and the permeate side was
evacuated by a rotary pump below 1 kPa. The composition of the permeate side was ana-
lyzed using a mass spectrometer (Pfeiffer vacuum QMG220, Asslar, Germany). The total
pressure in the chamber of the mass spectrometer, electron impact energy, and emission
were 10−3 Pa, 70 eV, and 20 mA, respectively. It is well known that some fragments were
formed under the operating condition of the mass spectrometer. For example, ethanol
exhibits peaks at the mass-to-charge ratios (m/z) of 26–31, 42, 43, 45, and 46. In this
study, the following m/z values of the highest signal were selected for detecting the re-
spective components: helium (m/z = 4), water (m/z = 18), methanol (m/z = 29), ethanol
(m/z = 31), 2-propanol (m/z = 45), acetone (m/z = 43), MEK (m/z = 28), THF (m/z = 42),
DMF (m/z = 73), DMSO (m/z = 63), and NMP (m/z = 44). The analytical accuracy of the
mass spectrometer was less than 3% in the experimental setup. The permeation flux of
component i, Ji, can be calculated as follows [13,15]:

Ji =
NHe

S
· yi

yHe
(1)

where NHe is the flow rate of helium; A, the effective membrane area, and yi, the mole
fraction of component i. The permeance of component i, Qi, was calculated by dividing the
permeation flux by the partial pressure difference between both the sides of the membrane
as follows:

Qi =
Ji

pf,i − pp,i
(2)

where pf,i and pp,i are the partial vapor pressures of component i in the feed solution and
the evacuated stream, respectively. The partial vapor pressure in the feed solution can be
estimated using the Antoine constants and Wilson parameters listed in Table 1 [16]. The
vapor-liquid equilibrium for binary mixtures is described as follows:

zi pt = xiγi pi (3)

where xi is the mole fractions of component i in the feed solution; zi, the mole fraction of
component i in the vapor phase; pt, the total vapor pressure; pi, the partial vapor pressure
of component i, and γi, the activity coefficient of component i. The total vapor pressure pt
is calculated as follows:

pt = xiγi pi + xjγj pj (4)
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Figure 1. Schematic illustration of pervaporation unit used in this study [13,15].

Table 1. Antoine constants and Wilson parameters for binary mixtures of solvent and water [16].

Solvent
Antoine Constant Wilson Parameter

A B C Λwo Λow

Water 8.02754 1705.616 231.405 —– —–
Methanol 8.07919 1581.34 239.65 0.89781 0.55148
Ethanol 8.04494 1554.3 222.65 0.79133 0.21618

1-Propanol 7.99733 1569.7 209.50 0.61233 0.04793
2-Propanol 6.6604 813.055 132.93 0.77714 0.04857
Acetonitrile 7.07354 1279.20 224.00 0.20540 0.20121

Acetone 7.29958 1312.25 240.705 0.42161 0.15813
MEK 6.97421 1209.6 216.00 0.03790 0.30482
THF 6.99515 1202.29 226.254 0.01394 0.24477
DMA 6.81565 1370.08 183.19 1.32523 1.27852
DMF 6.80578 1337.72 190.502 1.07720 1.41270

DMSO 7.76374 2048.74 231.556 2.60461 0.96533
NMP 6.9408 1528.93 185.05 0.90247 0.82095

The overall permeation flux and separation factor were calculated to compare the
dehydration performances of our membrane to literature. The overall permeation flux Jt
was given as follows:

Jt = 3600
n

∑
i

Mi Ji (5)

where Mi is the molecular weight of component i. The separation factor of water with
respect to organic solvent αw/o is defined as follows:

αw/o =
(yw/yo)

(xw/xo)
(6)

Subscripts w and o denote water and organic solvent, respectively.

3. Results and Discussion
3.1. Characterization

Figure 2 shows the SEM images of the support tube before and after the seeding and
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membrane formation. The weight of the support tube increased 0.16 wt% after the seeding
treatment, and the outer surface of the support tube was covered with seed particles. The
average diameter of seed particles was 380 nm, and the standard derivation was 100 nm.
Assuming that the density of NaA-type zeolite is 2.0 g cm3, the thickness of the seed
particles layer is calculated to be 2 µm approximately. After the secondary growth, the
outer surface of the support tube was completely covered with the polycrystalline layer as
shown in Figure 2c. The membrane consisted of two layers A and B, as shown in Figure 2d.
Layer A was the polycrystalline layer, and layer B was a nano-sized particles layer. The
thicknesses of both the layers were 2 µm. Kyotani et al. also reported the NaA-type zeolite
membranes with the similar structure [17]. The nano-sized particles layer proposes that
an excess amount of the seed particles for membrane formation were loaded on the outer
surface of the support tube.
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Figure 2. SEM images of the support tube. Outer surface of (a) original support tube, (b) after the
seeding treatment, (c) after the secondary growth, and (d) the cross section of (c).

Figure 3 shows the XRD patterns of the support tube, seed particles, and membrane.
The XRD pattern of the seed particles was identical to that of NaA-type zeolite, and no
other peaks due to impurities could not be found. Both the peaks of the support tube
and seed particles were observed in the XRD pattern of the membrane. These results
indicate that the NaA-type zeolite membrane could be prepared on the porous α-alumina
support tube.
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3.2. Dehydration Performances

Table 2 shows the dehydration performances of the NaA-type zeolite membrane for
organic solvents containing 10 wt% water around 348 K. The dehydration performances for
methanol, acetone, MEK, and THF were determined at the boiling points. The overall flux
and the separation factor for the ethanol solution at 348 K were 3.82 kg m−2 h−1 and 73,800,
respectively. The flux increased with the carbon number of alcohols while remaining
the high separation factor, and that reached 6.38 kg m−2 h−1 for the tert-amyl alcohol
solution at 348 K. The membrane also showed the excellent dehydration performances for
acetonitrile, acetone, MEK, and THF solutions. It is well known that the high separation
performance of the NaA-type zeolite membrane is attributed to the preferential adsorption
of water. However, the fluxes and separation factors for the DMA, DMF, DMSO, and NMP
solutions were lower than those of alcohols and solvents with low boiling points. The
lower dehydration performances will be discussed in Section 3.3.

Table 2. Dehydration performances of the NaA-type zeolite membrane.

Solvent xw (wt%) T (K) Jt (kg m−2 h−1) aw/o (-)

Methanol 10 336 2.42 7590
Ethanol 10 348 3.82 73,800

1-Propanol 10 347 4.74 >100,000
2-Propanol 10 348 4.88 40,000

tert-Amyl alcohol 10 348 6.38 33,600
Acetonitrile 10 347 5.76 >100,000

Acetone 10 327 2.34 >100,000
MEK 10 340 3.56 39,500
THF 10 336 3.46 9720
DMA 10 348 1.98 744
DMF 10 347 1.45 1290

DMSO 10 347 0.98 5730
NMP 10 344 4.05 1930

Many researchers developed several types of zeolite membranes, and they studied
the dehydration of organic solvents. Table 3 compares the dehydration performances of
NaA-type zeolite membranes reported previously. Okamoto and coworkers [6] devel-
oped the NaA-type zeolite membrane, and the permeation flux of their membrane was
2.15 kg m−2 h−1. Sato et al. [4] improved the permeation flux to 8.5 kg m−2 h−1 by de-
veloping the support tube with low mass transfer resistance. Our membrane showed the
average dehydration performance for the dehydration of ethanol compared to those of
previous studies. For the NMP solution at 344 K, the permeation flux and separation factor
of our membrane were 4.05 kg m−2 h−1 and 1930, respectively. They were higher than
those reported by Li et al. [12].

Table 3. Comparison of the dehydration performances of zeolite membranes.

Zeolite Solvent xw
(wt%) T (K) Jt (kg m−2 h−1) aw/o (-) Ref.

NaA Ethanol 10 348 3.82 73,800 This work
2-Propanol 10 348 4.88 40,000

NMP 10 344 4.05 1930
Ethanol 10 348 2.15 10,000 [6]

2-Propanol 10 348 1.76 10,000
Ethanol 10 348 8.50 >10,000 [4]
Ethanol 10 343 2.85 10,000 [12]

NMP 10 353 0.68 239
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3.3. Evaluation of Permeation Properties

The driving force of membrane permeation is the concentration difference between
both the sides of the membrane, and the concentration corresponds to the partial pressure.
Therefore, the experimental data under identical temperature and vapor pressures are
required to discuss the influence of the organic solvent species. Figure 4 shows the effect
of temperatures on the dehydration performances of the NaA-type zeolite membrane for
the binary mixtures of 90 wt% organic solvent and 10 wt% water. The water contents in
permeate were higher than 99.5 wt% at any temperatures for alcohols and low boiling
solvents, and the equivalent permeation fluxes were obtained, except for tert-amyl alcohol.
However, the overall fluxes and water contents in the permeate for DMA, DMF, DMSO, and
NMP solutions were lower than those for the other solvents. The partial vapor pressures
of water were 5–13 kPa for the high boiling solvents at 343 K while 14–25 kPa for the
others. The lower vapor pressures of water attribute to the low overall fluxes for high
boiling solvents.
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Figure 4. Dehydration performances of the NaA-type zeolite membrane for the binary mixtures of 90 wt% organic solvent
and 10 wt% water.

Then, the data in Figure 4 were converted to the permeance of each component to
exclude the influence of partial vapor pressure. Figure 5 shows the Arrhenius plot of the
permeances. The permeances of water were (2–7) × 10−6 mol m−2 s−1 Pa−1 for all solvents.
On the contrary, the permeances of DMA, DMF, DMSO, and NMP were two orders of
magnitude higher compared to the other solvents. The lower separation performances
shown in Figure 4 were due to the higher permeances of the high boiling solvents.

Table 4 indicates the properties of solvents. The dipole moments of the high boil-
ing solvents are twice of water approximately. When the interaction potential between
polar molecules are described by the Lennard-Jones 12–6 potential, the potential param-
eters are estimated by σ = (1.585Vb/(1 + 1.3d2))1/3 and ε/k = 1.18(1 + 1.3d2)Tb, where
d = 1940µ2/(VbTb) [18]. σ is the distance between molecules at zero-interaction potential.
The DMA, DMF, DMSO, and NMP molecules are larger than the micropore diameter
of LTA-type zeolite (0.4 nm [19]). This proposes that those molecules permeate through
the intercrystalline boundaries of the polycrystalline layer. Liu et al. [20] observed the
microstructures of the NaA-type zeolite membranes by a TEM, and they found the inter-
crystalline with the distance of 4–8 nm between crystallites forming the membranes. The
parameter ε/k corresponds to the interaction strength. The higher ε/k means that the high
boiling solvents interact with the zeolite surface. The higher permeances of DMA, DMF,
DMSO and NMP in Figure 4 were attributed to the stronger interaction with the surface
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of intercrystalline boundaries. Moreover, this proposes that the separation mechanism of
these solvents is different from those for alcohols and the low boiling solvents. The diffu-
sion of molecules is also important for the membrane permeation in addition to adsorption.
Therefore, it is considered that the separation of water from the high boiling solvents is
concerned with the difference in the diffusivity.

Figure 5. Effect of temperatures on the permeances of water and organic solvents for the binary mixtures of 90 wt% organic
solvent and 10 wt% water.

Table 4. Properties of solvents [18,21].

Solvents Mi (103 kg mol−1) Tb (K) µ (D) σ (nm) ε/k (K)

Water 18.0 373 1.82 0.296 382
Methanol 32.0 338 1.71 0.380 359
Ethanol 46.1 352 1.73 0.430 373

1-Propanol 60.1 370 1.69 0.469 398
2-Propanol 60.1 355 1.66 0.470 377

tert-Amyl alcohol 88.1 375 1.90 0.581 1 453 1

Acetonitrile 41.1 355 3.92 0.486 176
Acetone 58.1 329 2.88 0.469 326

MEK 72.1 353 2.80 0.504 394
THF 72.1 339 1.63 0.486 403
DMA 87.1 438 3.82 0.491 1 783 1

DMF 73.1 426 3.86 0.582 1 623 1

DMSO 78.1 462 4.30 0.381 1 813 1

NMP 99.1 475 3.59 0.651 1 616 1

1 The diameter and interaction energy are estimated by σ = (1.585Vb/(1 + 1.3d2))1/3 and ε/k = 1.18(1 + 1.3d2)Tb,
where d = 1940µ2/(VbTb) [18].

The permeance at infinite temperature Qi* and activation energy for permeation Ep
can be calculated from the Arrhenius plots of the permeance as follows:

Qi = Qi
∗ exp

(
−

Ep

RT

)
(7)

Figure 6 shows the correlation between the pre-exponential factor and activation
energies of water and organic solvents. The data could be categorized into the following
three types: (1) water; (2) alcohols and low boiling solvents, and (c) high boiling solvents.
The same trend was found for a high-silica CHA-type zeolite membrane [13].

The effect of temperature on the gas permeation properties of several kinds of zeolite
membranes was reported [22–25]. The permeance of adsorbed gases increased with tem-



Membranes 2021, 11, 347 9 of 13

perature, reached the maximum, and decreased at higher temperatures. The temperature
dependency is explained by adsorption and diffusion. Since the permeance increases
near room temperature, Ep > 0 and higher Qi* are obtained in the temperature range. As
temperature increases, both Ep and Qi* decreases. As a result, a similar correlation shown
in Figure 6 is obtained for gas permeation. The correlation of Ep and Qi* shifts to the
upper left for organic solvents because of the larger molecular size and molecular weight
compared to water. It is considered that the shift is small for the high boiling solvents since
they adsorbed on the surface of the intercrystalline boundaries, as discussed above.
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The permeation behavior through zeolite membranes is explained by adsorption and
diffusion. Therefore, the permeance is proportional to the product of adsorptivity and
diffusivity, and the effect of temperatures is described as follows [4,13]:

Qi
∗ exp

(
−

Ep

RT

)
=

Si
∗Di

∗

δ
exp

(
−ED − (−∆Ha)

RT

)
(8)

where Si* and Di* are the adsorptivity and diffusivity at infinite temperatures, respectively.
ED and −∆Ha denote the activation energy for diffusion and the heat of adsorption,
respectively. The activation energy for permeation Ep is equal to the difference of the
activation energy ED and the heat of adsorption −∆Ha. Therefore, the negative activation
energies of water propose that the water molecules adsorbed on zeolite preferentially are
transferred by the surface diffusion. For DMA and NMP solutions, in contrast, Ep of water
was positive, while these solvents were negative values. If the negative Ep of DMA and
NMP means the preferential adsorption and surface diffusion, the positive Ep of water
implies that the higher energy is required for water molecules to overtake these organic
solvents in the membrane. However, as listed in Table 4, the molecular sizes of DMA and
NMP are larger than the micropore diameter of NaA-type zeolite (0.4 nm). These suppose
that the intercrystalline boundaries play important roles in the dehydration of the high
boiling solvents.

The influence of the water content in the feed was investigated to discuss the influence
of the adsorption of NMP. Figure 7 shows the dehydration performances of the NaA-type
zeolite membrane as functions of the water content in the feed solution at 300–344 K. The
fluxes increased with the water content and temperature because of the higher partial vapor
pressure of water. The separation factor was only 4–10 at the water content of 0.6 wt%,
increased significantly at 10 wt%, and reduced slightly at the higher water contents.

Figure 8 represents the effect of temperatures on the permeances of water and NMP
at the water concentration of 0.6, 10, 30, and 50 wt%. The permeance of NMP was higher
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than that of water at 0.6 wt%, while that of water was higher at the water contents of more
than 10 wt%. Moreover, the permeance of water increased with temperature, although
those for alcohols and low boiling solvents decreased, as shown in Figure 5. Figure 9 shows
the correlation between the pre-exponential factors and activation energies for the NMP
solutions. Interestingly, the data of NMP at the water content of 0.6 wt% was plotted on the
extended line of the water permeance. In addition, the influence of the concentration on
the Ep and Qi* of NMP was smaller compared to water. These results propose that NMP
adsorbed on the zeolite membrane more strongly than water.
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Figure 8. Effect of temperatures on the permeances of water (open symbols) and NMP (closed
symbols). The water contents in the feed were 50 wt% (circles), 30 wt% (triangles), 10 wt% (squares),
and 0.6 wt% (reverse triangles).

Figure 10 compares our results with the literature [6–8,10,11,13,26]. The NaA and
CHA-type zeolite membranes showed similar tendencies. For the NaA-type zeolite mem-
branes investigated by Okamoto and coworkers [6,26], the data of water were shifted to
the upper left. The difference may be according to the kind of support tube. They prepared
zeolite membranes on porous mullite tubes, while the other membranes were formed on
porous α-alumina tubes.

It is well known that the preferential adsorption of water compared to alcohols at-
tributes to the high dehydration performances of zeolite membranes, even if the membrane
has the intercrystalline boundaries. On the contrary, it proposes that higher water diffusiv-
ity attributes to the water selective permeation for the high boiling solvents, as discussed
in Figures 4 and 5. Therefore, we concluded that the different correlation between the
pre-exponential factor and the activation energy shown in Figures 6, 9 and 10 reflected the
difference in the separation mechanisms by solvents.
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4. Conclusions

The NaA-type zeolite membrane was prepared on the outer surface of the porous
α-alumina tube by the secondary growth of seed particles in this study. The permeation
flux and separation factor for the 90 wt% ethanol solution at 348 K were 3.82 kg m−2 h−1

and 73,800, respectively. The permeation flux was increased with an increase in the carbon
number of alcohols with maintaining the high separation factor. The high dehydration
performances were also obtained for low boiling solvents such as acetonitrile, acetone, MEK,
and THF. However, the permeation fluxes and separation factors decreased significantly
for high boiling solvents such as DMA, DMF, DMSO, and NMP. The separation factor
was 1930 for the 90 wt% NMP solution at 344 K. The influences of the water content and
temperatures on the dehydration performances were determined for the binary mixtures
of water and NMP to understand the lower dehydration performances for the high boiling
solvents. As a result, the lower permeation fluxes and separation performances for the high
boiling solvents were attributed to the lower partial vapor pressures of water and the higher
permeances of those organic solvents, respectively. Furthermore, the permeation behaviors
through zeolite membranes were discussed using the correlation of pre-exponential factor
and activation energy.
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Nomenclature

A Antoine constant (dimensionless)
B Antoine constant (dimensionless)
C Antoine constant (dimensionless)
Di* diffusion coefficient of component i at infinite temperature (m2 s−1)
ED activation energy for diffusion (kJ mol−1)
Ep activation energy for permeation (kJ mol−1)
−∆Ha heat of adsorption (kJ mol−1)
Ji permeation flux of component i (mol m−2 s−1)
Jt overall permeation flux (kg m−2 h−1)
k Boltzmann constant (J K−1)
Mi molecular weight (kg mol−1)
NHe molar flow rate of helium (mol s−1)
pi partial pressure of component i (Pa)
pt total vapor pressure (Pa)
Qi permeance (mol m−2 s−1 Pa−1)
Qi* permeance at infinite temperature (mol m−2 s−1 Pa−1)
R gas constant (J mol−1 K−1)
S effective membrane area for permeation (m2)
Si* adsorption coefficient of component i at infinite temperature (mol m−3 Pa−1)
Tb boiling temperature (K)
Vb molar volume at boiling temperature (cm3 mol−1)
xi mole fraction of component i in solution (dimensionless)
yi mole fraction of component i in the evacuated stream (dimensionless)
zi mole fraction of component i in vapor phase (dimensionless)
Symbols
αw/o separation factor of water with respect to organic solvents (dimensionless)
δ membrane thickness (m)
ε depth of potential in Lennard-Jones potential (J)
γi activity coefficient of component i (dimensionless)
Λij Wilson parameter of components i-j (dimensionless)
µ dipole moment (D)
σ distance at zero interaction in Lennard-Jones potential (m)
Subscripts
f feed solution
p permeate side
o organic solvent
w water
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