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Abstract: This paper reports an extended Nernst–Planck computational model that couples charged-
defect transport and stress in tubular electrochemical cell with a ceramic proton-conducting mem-
brane. The model is particularly concerned with coupled chemo-mechanical behaviors, including
how electrochemical phenomena affect internal stresses and vice versa. The computational model pre-
dicts transient and steady-state defect concentrations, fluxes, stresses within a thin BaZr0.8Y0.2O3−δ

(BZY20) membrane. Depending on the polarization (i.e., imposed current density), the model pre-
dicts performance as a fuel cell or an electrolyzer. A sensitivity analysis reveals the importance of
thermodynamic and transport properties, which are often not readily available.

Keywords: electrochemistry; transport-induced stress; ceramic-proton-conducting membranes;
BZY20

1. Introduction

Materials such as doped barium zirconates (e.g., BaZr1−xYxO3−δ, BZY) are perovskites
that have good proton conductivity at intermediate temperatures (T & 500 ◦C) [1] and
chemical stability in environments containing H2O and CO2 [1–4]. Thus, these materials
are suitable as proton-conducting membranes for applications that depend on hydrogen
separations (e.g., fuel cells) [5,6]. Protonic ceramic membranes have also been employed
to compress hydrogen up to 50 bar. Methane is reformed in the presence of steam on the
Ni-BZY based ceramic-metal support, and the produced hydrogen is galvanically driven
through the membrane and compressed on the other side of the membrane [7]. Although
BZY materials are predominantly proton conductors in moist reducing atmospheres, they
are mixed ionic-electronic conductors (MIEC) in oxidizing atmospheres with the presence of
O-site polarons. As the temperature increases above 600 ◦C, the conduction through oxygen
vacancies becomes not negligible. The present paper focuses on the chemo-mechanical
behavior of BaZr0.8Y0.2O3−δ, called BZY20.

The concentration variations associated with charged-defect transport within the
membrane cause lattice-scale strain and volume deformation, often referred to as chemical
expansion [8,9]. Because ceramic materials are brittle, defect-induced stresses can initiate
distortions, cracks, and fracture. Moreover, as discussed in early works by Lee [10] and
Larché and Cahn [11,12], local stress gradients also contribute to defect fluxes [13].

Atkinson et al. [14,15] analyzed the effects of defect-induced stress in solid-oxide
fuel cells (SOFCs) and oxygen-ion-conducting membranes with alternative geometries
and mechanical constraints. Euser et al. developed an extended Nernst–Planck–Poisson
(NPP) model to evaluate stress in planar and radial oxygen-separation membranes [16–18].
Andersson et al. [19] and Han et al. [20] used X-ray diffraction to measure the chemical
expansion of BZY for different dopant levels in moist and dry environments. Marrocchelli
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et al. [21] and Bishop et al. [22] reported detailed descriptions of chemical expansion in the
perovskite materials. Dubois et al. [23] developed a coupled chemo-thermo-mechanical
model using an extended Nernst-Planck formulation and evaluated the stresses associated
with a protonic-ceramic fuel cell (PCFC) in a button-cell configuration. Ricote et al. [24]
used high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis (TGA)
to study the effects of oxygen partial pressure on lattice parameters and oxygen non-
stoichiometry in BaZr0.9Dy0.1O3−δ (BZDy10).

The current study develops an electro-chemo-mechanical computational model based
on an extended Nernst–Planck (NP) formulation. The one-dimensional radial model
considers a tubular configuration with a thin dense BZY20 membrane supported by a
relatively thick porous composite electrode (Figure 1). The model predicts transient profiles
of defect concentrations and stress states as functions of applied electrical current. As
with all models, results depend on physical parameters, including thermodynamic and
transport properties. A sensitivity analysis seeks to identify the most important parameters
and properties.

Porous Ni-BZY20

BZY20

≈ 1 mm

Load
e-

e-

Figure 1. Proton-conducting tubular cell consisting of a dense BZY20 electrolyte supported by porous
Ni-BZY20 operating as a fuel cell.

2. Defect Chemistry

The structures and behaviors of proton-conducting ceramics have been documented
in numerous reviews [1,2,19,25–31]. Oxides with ABO3 perovskite structures, such as
BaZrO3, are among the most promising proton conductors. Effective proton conductivity
is established by B-site doping with a trivalent cation such as yttrium (Y3+) to replace a
fraction of the Zr4+, thus introducing oxygen vacancies to preserve local charge neutrality.
The present study considers 20% Y doping, BaZr0.8Y0.2O3−δ. The needed thermodynamic,
transport, and mechanical properties are derived from prior publications [1,2,4,19].

Figure 1 illustrates aspects of the tubular geometry and the transport processes. The
profiles and fluxes of three mobile charged defects (protons OH•O, oxygen vacancies V••O
and polarons O•O) depend on the current density via an external circuit. Depending on the
polarization (i.e., the direction of the electrical current), the cell may operate as a fuel cell or
as an electrolyzer [32]. As illustrated in Figure 1, the present study considers gas-phase
mixtures of 20% H2O and 80% O2 on the exterior electrode (positrode) and 97% H2 and 3%
H2O on the interior electrode (negatrode).

Defect-incorporation reactions at the membrane boundaries may be stated in Kröger–
Vink notation as

1
2

H2 + O•O 
 OH•O, (1)

1
2

O2 + O×O + V••O 
 2O•O, (2)

H2O + V••O + O×O 
 2OH•O. (3)
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Corresponding equilibrium constants for the incorporation reactions are

Kp,H2 =
[OH•O]L

p1/2
H2

[
O•O
]

L

, (4)

Kp,O2 =

[
O•O
]2

L

p1/2
O2

[
OX

O

]
L

[
V••O

]
L

, (5)

Kp,H2O =
[OH•O]

2
L

pH2O
[
O×O
]

L

[
V••O

]
L

, (6)

where pk are the gas phase partial pressures and the defect concentrations are represented
in lattice units. The defect molar concentrations may be evaluated using the molar volume
(for BZY20, Vm = 4.57× 10−5 m3 mol−1) as

[Xk]L = [Xk]Vm. (7)

The present model includes polaron traps [4]. In other words, some fraction of the
otherwise highly mobile small polarons can be trapped, thus immobilized in the proximity
of the yttrium dopant. Stated as a reaction,

Y′Zr + O•O 

(
Y′Zr −O•O

)
. (8)

The associated equilibrium constant follows as

Kp,Trap =

[(
Y′Zr −O•O

)]
L[

Y′Zr
]

L

[
O•O
]

L
. (9)

The present model also assumes that the gas phases are equilibrated on both sides of
the cell,

H2 +
1
2

O2 
 H2O. (10)

Because the gas phase is equilibrated, the defect-incorporation equilibrium constants
are not all independent; they are constrained as

K2
p,H2

Kp,O2 = Kp,H2OKp,G. (11)

The equilibrium constants for each reaction can be evaluated via thermodynamic
properties as

Kp = exp
(
−∆G◦

RT

)
= exp

(
−∆H◦

RT

)
exp

(
∆S◦

R

)
, (12)

where T is temperature, R is the gas constant, ∆G◦ is the change in Gibbs free energy, ∆S◦

is the change in defect entropy , and ∆H◦ represents change in enthalpy. Table 1 lists the
thermodynamic properties used in the present study [4].
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Table 1. Enthalpy and entropy of defect incorporation reactions in BZY20. Reproduced with
permission from Zhu et al. [4]. Copyright The Electrochemical Society, 2018.

Reaction ∆H◦ ∆S◦

(kJ mol−1) (J mol−1 K−1)

1
2 H2 + O•O 
 OH•O −228.36 −54.80
1
2 O2 + O×O + V•O 
 2O•O 115.31 −45.89

H2O + V•O + O×O 
 2OH•O −93.30 −100.00

Y′Zr + O•O 

(
Y′Zr −O•O

)
−90.30 −6.71

H2 +
1
2 O2 
 H2O −248.11 −55.48

Assuming the defect reactions at the membrane surfaces are at equilibrium, defect con-
centrations at surfaces are constants that depend on the gas phase composition. Evaluating
the boundary concentrations must consider site and electroneutrality balances. Charge
neutrality requires that

2[V••O ]L + [OH•O]L + [O•O]L −
[
Y′Zr
]

L = 0. (13)

The ABO3 pervoskite structure further constrains the oxygen site balance as

[V••O ]L + [OH•O]L + [O•O]L + [Ox
O]L +

[(
Y′Zr −O•O

)]
L = 3. (14)

The yttrium doping is fixed as
[
Y′Zr
]◦

L = 0.2, which also constrains the trap balance as[
Y′Zr
]

L +
[(

Y′Zr −O•O
)]

L =
[
Y′Zr
]◦

L. (15)

The defect concentrations at the boundaries are calculated by solving Equations (5),
(6), (9), (13)–(15) simultaneously. Algorithmic details about the calculation may be found
in Zhu et al. [4].

3. Extended NP Membrane Model

The defect concentrations are governed by a conservation principle, represented
mathematically as

∂[Xk]

∂t
+∇ • Jk = ω̇k, (16)

where t is time, Jk are defect transport fluxes, and ω̇k are the net molar production rates of
the polaron traps within the membrane [4]. In the current work, standard Nernst–Planck
fluxes are extended to incorporate the contribution from hydrostatic-stress gradients. The
defect-transport fluxes include the effects of diffusion JD

k , migration, JM
k , and hydrostatic

stress JS
k ,

Jk = JD
k + JM

k + JS
k . (17)

The flux may be represented as

Jk = −Dk

(
∇[Xk] +

zkF
RT

[Xk]∇Φe −
3βk
RT

[Xk]∇σh

)
, (18)

where Dk are defect diffusion coefficients, zk are the defect’s charge, Φe is the electrostatic
potential, βk is the coefficient of chemical expansion, and σh is the hydrostatic stress. The
defect charges are zV••O

= +2, zOH•O
= +1, and zO•O

= +1. Hydrostatic stress within the
membrane is defined as

σh =
σrr + σθθ + σzz

3
. (19)
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The polaron traps are produced and consumed according the reaction represented by
Equation (8). The rate of progress of the trap reaction may be evaluated via mass-action
kinetics as

q̇Trap = kf[Y
′
Zr][O

•
O]− kb

[(
Y′Zr −O•O

)]
, (20)

where kf and kb are forward and backward rate constants, which are related through
the equilibrium constant. The present model assumes kf = 106. The species production
rate due to the trap reaction can be expressed as ω̇Y′Zr

= −q̇Trap, ω̇O•O
= −q̇Trap, and

ω̇(Y′Zr−O•O)
= q̇Trap.

3.1. Chemical-Expansion Coefficient

The chemical-expansion coefficient βk is defined to be the change in lattice volume
with respect to the changes in defect concentration. As reported by Andersson et al. [19],
the present model uses βOH•O, L = 0.033 (in lattice units). In molar units, βk = βOH•O, LVm =

1.5× 10−6 m3 mol−1. Ricote et al. [24] showed that the O-site polarons produce negligible
chemical expansion. The present model attributes all chemical expansion to the protons,
neglecting lattice distortion due to polarons and oxygen vacancies.

3.2. Electrostatic Potential Φe

The electrostatic potential may be calculated by solving the Gauss equation,

∂E
∂t

=
1

ε0εr

[
i−∑

k
zkFJk

]
, (21)

where the electrostatic-potential field is E = ∇Φe, ε0 and εr are vacuum and relative per-
mittivities, respectively, and i is the external current density. However, the present model
implements an approximately equivalent method by enforcing strict local electroneutrality.
In this limit, the local charge flux must vanish as

∑
k

zkF[Xk] = 0. (22)

The electrostatic potential on one of the boundaries is set to a reference Φe = 0, while
the other boundary is set to impose the net current density i through the membrane. In
other words, the charge flux through the membrane is exactly balanced by the current
density i through the external circuit,

∑
k

zkFJk = i. (23)

This algebraic equation, together with Equation (16), is sufficient to determine the
local electrostatic-potential gradient ∇Φe.

3.3. Defect Diffusion Coefficients

The charged-defect diffusion coefficients are represented in an Arrhenius equation as

Dk = D◦k exp
(
− Ek

RT

)
, (24)

where D◦k and Ek are pre-exponential factors and activation energies, respectively. As re-
ported by Zhu et al. [4], Table 2 lists the values of D◦k and Ek for three mobile charged defect.
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Table 2. Pre-exponential factors and activation energies for diffusivities of mobile charged defects
in BZY20. Reproduced with permission from Zhu et al. [4]. Copyright The Electrochemical Society,
2018.

Charged Defects D◦
k Ek

(m2 s−1) (kJ mol−1)

OH•O 5.18 ×10−7 60.66

V••O 2.03 ×10−7 85.19

O•O 1.38 ×10−5 7.18

3.4. Stress, Strain, and Displacement

The isotropic stress–strain relationship including chemically induced stress may be
written as

σ = λ tr(ε)I + 2Gε− (3λ + 2G)

(
∑
k

βk∆[Xk]

)
I. (25)

where σ is the stress tensor, ε is the strain tensor, I is the unit tensor, and ∆[Xk] represents
the change in concentration with respect to a reference zero-strain state. The current study
does not incorporate the residual strain related to the fabrication process [5,23]. The Lamé
constant λ and shear modulus G are defined as

λ =
Emνm

(1 + νm)(1− 2νm)
, (26)

G =
Em

2(1 + νm)
. (27)

In these expressions, Em is the Young’s modulus, and νm is Poisson’s ratio of the
membrane. The tube is assumed to be infinitely long, resulting in a plane-strain state.
Consequently, the strain components in the axial z direction vanish,

εzz = εzr = εzθ = 0. (28)

The strain–displacement relationships with respect to radial displacement u are ex-
pressed as

εrr =
∂u
∂r

, εθθ =
u
r

, εrθ = 0. (29)

Assuming a quasi-static stress field and the absence of body forces, the divergence of
the stress must vanish,

∇ • σ = 0. (30)

In one-dimensional radial coordinates, the stresses can be represented as

∂σrr

∂r
+

1
r

∂σrθ

∂θ
+

∂σrz

∂z
+

σrr − σθθ

r
= 0. (31)

Considering the tube to be long and axisymmetric, variations in axial z and circumferential
θ stresses can be neglected. The radial component of the stress equilibrium simplifies to

∂σrr

∂r
+

σrr − σθθ

r
= 0. (32)

In practice, protonic-ceramic membranes should be as thin as possible to promote
high proton fluxes (usually on the order of tens of microns). Such very thin membranes
must be supported with relatively thick porous support structures that also serve as
electrodes (cf., Figure 1). In reducing environments (e.g., anodes of protonic-ceramic fuel
cells) the most widely used supports are composites of Ni-BZY. Such structures provide
the mechanical strength and stability. The percolating Ni phase serves dual roles as the
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hydrogen-reduction catalyst and the electrical conductor. Table 3 lists the dimensions of
tube used for the present study. The membrane is 10 µm thick and the porous support is
1 mm thick. The outer electrode is specified to be thin, but not explicitly included in the
present model.

The current study, which specifically focuses on the electro-chemo-mechanical be-
havior within the membrane, neglects defect transport and chemical expansion within
the porous support. Table 3 also includes mechanical properties of BZY20 and Ni-BZY20.
These properties were determined experimentally using the ultrasonic measurements [23].

The mechanical aspects of the present model follow the approach reported by Euser
et al. [17]. By substituting the stress–strain relationships (Equation (25)) and strain–displacement
relationships (Equation (29)), the equilibrium equation (Equation (32)) can be solved ana-
lytically to produce the local displacements u, assuming a perfect bond between support
and membrane properly satisfies continuity of displacement and traction at the membrane
boundary. The constants of integration can be evaluated assuming inner and outer surfaces
of the tube are traction-free. Using these displacements, the local stress components within
the membrane and porous support can be evaluated.

Table 3. Thermo-mechanical and geometrical properties of model.

Parameter Value

Temperature, T 600 ◦C

Molar volume, Vm 4.57× 10−5 m3 mol−1 [4]

Outer support radius, rs 4× 10−3 m

Inner membrane radius, ri 5× 10−3 m

Outer membrane radius, ro 5.01× 10−3 m

Membrane Young’s modulus, Em 205 GPa
BZY20

Support Young’s modulus, Es 108 GPa
Ni-BZY20 (Dry–25% porosity)

Membrane Poisson’s ratio, νm 0.24
BZY20

Support Poisson’s ratio, νs 0.27
Ni-BZY20 (Dry–25% porosity)

3.5. Computational Implementation

The computational model is formulated using the method-of-lines and a one-dimensional
radial finite-volume mesh network. The model incorporates two-way coupling between
the defect transport and stress in the membrane. Transport induced stress is evaluated
using the analytical solution. Euser et al. [17] reported the radial displacement and stress
for the tubular membrane, respectively, as

u(r) =
1 + vm

1− vm

I(r)
r

+ C1r +
C2

r
, (33)

σrr(r) =−
Em

(1− vm)

I(r)
r2 +

Em

(1 + vm)(1− 2vm)
C1

− Em

(1 + vm)

C2

r2 ,
(34)
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where C1 and C2 are constants of integration, which can be calculated using the mechanical
boundary conditions, as discussed earlier. In addition,

I(r) =
∫ r

ri

r ∑
k

βk∆[Xk]dr. (35)

where ri is the inner radius of membrane. The transport problem is solved numerically.
Equation (16) is effectively a parabolic partial differential equation that is solved in Matlab
using the ode15i function. The second-order flux derivatives are approximated using
conservative central differences. The migration JM

k and stress JM
k fluxes are discretized using

an up-winding scheme, where the coefficient of [Xk] behaves as an artificial velocity [33,34].
The simulations run efficiently and quickly on a typical personal computer.

4. Results and Discussion
4.1. Concentration Profiles

Figure 2 shows the predicted steady-state lattice-scale concentration profiles [X]L of
charged defects for current densities ranging between i = −2 A cm−2 (electrolysis) and
i = 2 A cm−2 (fuel cell). The proton concentrations are larger than, but comparable to, the
vacancy and the trap concentrations. The O-site polaron concentrations are much lower.
Even at open circuit, there is significant curvature in the defect-concentration profiles. The
sense of the curvatures changes depending on the polarization (i.e., direction of the charge
flux). Under fuel-cell polarization (i > 0), the profiles reveal boundary-layer behavior near
the O2/H2O side of the membrane. Interestingly, under very strong fuel-cell polarization,
a local minimum appears in the proton profile.

Figure 3 illustrates transient behavior of the concentration profiles, beginning from
open-circuit conditions as a current density of i = 1 A cm−2 is suddenly imposed. The
characteristic time constant for the transient is on the order of one second. The vacancies,
traps, and polarons behave as may be anticipated, transitioning smoothly between the two
polarization states. The proton concentrations reveal somewhat more unusual behavior.
The proton concentrations initially increase, before later approaching the lower concen-
trations at the i = 1 A cm−2 steady-state. Although the magnitudes of the concentration
variations are not large, there could be implications on the local transient stresses.

i = −2 A cm−2

−1 A cm−2

0 A cm−2

1 A cm−2

2 A cm−2 

−2 A cm−2

−1 A cm−2

0 A cm−2

1 A cm−2

i = 2 A cm−2

i = −2 A cm−2

−1 A cm−2

0 A cm−2

1 A cm−2
2 A cm−2 

−2 A cm −2 −1 A cm −2

i = 0 A cm−2

1 A cm−2

2 A cm−2 

105
0

1.0

2.0

3.0

0

0.10

0.11

0.12

0

(a)

(b)

(c) (d)Steady Steady

Steady

Steady

O
O

[
] L

× 
10

6

O
O
)

[
] L

(Y
Zr

 - ´

V
O

[
] L

O
H

O
[

] L

r − ri (μm)

0.01

0.02

0.03

0.04

0.05

0.01
0.02
0.03
0.04
0.05
0.06

80% O2, 20% H2O97% H2, 3% H2O 80% O2, 20% H2O97% H2, 3% H2O

1050
r − ri (μm)

Figure 2. Charged-defect concentration profiles (lattice units) across the membrane for imposed
current densities (i = −2,−1, 0, 1, 2 A cm−2) at 600 ◦C. (a) protons, (b) oxygen vacancies, (c) trapped
polarons, and (d) O-site polarons.
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0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

O
O

[
] L

× 
10

6

1050
r − ri (μm)

Steady

t = 0 s

t = 1 s

(d) 1 A cm−2i = 0

1050
r − ri (μm)

0.01
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0.04
0.05
0.06

O
O
)

[
] L

(Y
Zr

 - ´

Steady

t = 0 s

t = 0.01 s

t = 1 s

(c) 1 A cm−2i = 0

0
0.01
0.02
0.03
0.04
0.05
0.06

V
O

[
] L t = 0 s

Steady

t = 1 s

(b)

1 A cm−2i = 0

0

0.10

0.11

0.12

O
H

O
[

] L

(a)

97% H2, 3% H2O 80% O2, 20% H2O

1 A cm−2i = 0

t = 1 s

t = 0.005 s
t = 0.01 s

t = 5 s
Steady

t = 0

97% H2, 3% H2O 80% O2, 20% H2O

Figure 3. Charged-defect concentration profiles (lattice units) during a transient between open circuit
and a suddenly imposed current density of i = 1 A cm−2. The cell temperatures is fixed at 600 ◦C. (a)
protons, (b) oxygen vacancies, (c) trapped polarons, and (d) O-site polarons.

4.2. Proton Flux Profiles

Proton flux is an important measure of membrane performance. Figure 4 shows the
predicted proton flux as a function of current density for selected oxygen concentrations at
the tube’s exterior electrode. Interestingly, under fuel-cell polarization (i > 0), the flux is
only weakly affected by the O2 concentration. The effect is much more significant under
electrolysis polarization. As may be anticipated, high steam concentrations (i.e., low O2
concentration) lead to higher proton fluxes under electrolysis conditions.

Electrolysis Fuel cell

−1.5 −1 −0.5 0 0.5 1

0

0.1

−0.1

(m
ol

 s−
1  m

−2
)

J O
H

O

80% O2

1% O2

i (A cm−2) 

Figure 4. Protonic flux change as a function of current density for selected air side oxygen compo-
sitions ranging from 1% to 80% at 600 ◦C. The oxygen concentration is balanced with steam at the
boundary.

At steady state, the defect-flux profiles must be essentially flat (i.e., very little spatial
dependence). However, because of the radial coordinates, there will be very slight radial
variations in the steady-state fluxes. The net proton flux comprises diffusion, migration,
and stress contributions (Equation (17)). These flux contributions do vary spatially, even
at steady state. Figure 5 plots separately the individual steady-state flux-contribution
profiles under a range of imposed current densities. These results show that the migration
contributions generally dominate. Especially under fuel-cell polarization, the diffusion
and stress contributions have strong gradients near the outer boundary. The behaviors are
consistent with those reported by Euser et al. [16,17] for La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF)
oxygen-transport membranes.

Figure 6 shows proton-flux profiles during a transient between open circuit and a
suddenly imposed current density of i = 1 A cm−2. Even under open-circuit conditions,
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there is a small proton flux. Upon polarization, the flux profiles have spatial gradients,
with the highest fluxes near the hydrogen fuel boundary. However, within a few seconds,
the proton-flux profile becomes spatially uniform again at a significantly higher value,
driving protons from the fuel side toward the oxygen side.
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Figure 5. Steady-state proton-flux contributions for selected current densities (i = −2,−1, 0, 1, 2 A
cm−2) at 600 ◦C. (a) diffusion flux, (b) migration flux, and (c) stress-induced flux.
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Figure 7. Steady-state hydrostatic stress profiles for selected current densities with the cell operating
at 600 ◦C.
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Figure 8. Steady-state stress-contribution profiles for selected current densities (i = −2,−1, 0, 1, 2 A
cm−2) with the cell operating at 600 ◦C. (a) radial, (b) hoop, and (c) axial stress components.

4.3. Stress Profiles

Figure 7 shows hydrostatic stress profiles within the membrane for different imposed
current densities. The stresses in the fuel cell mode (i > 0) are considerably higher than in
electrolysis mode (i < 0). The fuel-cell stresses have local maxima within the membrane,
slightly exceeding the high fuel-side boundary stresses. Moreover, the fuel-cell stress
gradients are high, especially near the oxygen boundary. The curvature of the hydrostatic-
stress profiles is positive for electrolysis, while it is negative at open circuit and in fuel-cell
operation. Under strong electrolysis polarization, there can be a slight local minimum in
the steady-state hydrostatic-stress profile. The present model attributes chemical strain to
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the protons. Comparing Figures 2a and 7 shows that the correlation between the proton
concentration profile and the hydrostatic stress profiles is evident.

Figure 8 shows profiles of the normal stress components that contribute to the hy-
drostatic stress. The radial stresses are compressive while hoop and axial stresses are
tensile and nearly identical. The hydrostatic stress distribution is similar to hoop and axial
stresses, although with lower magnitude since radial stresses are compressive (Figure 7).
The stresses in the porous support are negligible, as chemical expansion in the support
is omitted.

Figure 9 shows the transient response of the hydrostatic stress as a current density
of i = 1 A cm−2 is suddenly imposed from an initial open-circuit steady-state condi-
tion. The local stresses decrease at early times, with local upward curvature at a time of
around one second. By about five seconds, the steady-state hydrostatic-stress profile is
achieved. The transient stress profiles behave similar to the transient proton concentrations
profiles (Figure 3a).

In a practically operating cell, the gas compositions and temperature can vary owing
to reagent depletion, dilution, etc. Cell electrochemical performance generally depends
on gas-phase concentrations. Local stresses are also affected by gas-phase composition.
Figure 10 shows the maximum hydrostatic stress as a function of oxygen concentration
for the imposed current density of i = 1 A cm−2. As the oxygen partial pressure at the
cathode boundary increases, the maximum hydrostatic stress decreases considerably. This
curve does not depend significantly on the current density. Consequently, maintaining
high oxygen concentration could enhance mechanical integrity.
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Figure 9. Transient hydrostatic stress profiles within the membrane, beginning at open circuit and
suddenly imposing a fuel-cell current density of i = 1 A cm−2.
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Figure 10. Maximum hydrostatic stress as a function of oxygen fraction at the outer boundary under
i = 1 A cm−2 imposed current density. The oxygen fraction is balanced with steam. The cell is fixed
at a temperature of 600 ◦C.

4.4. Sensitivity Analysis

There is considerable uncertainty in some of the physical properties for BZY20. Thus,
it is interesting to investigate the sensitivity of predicted results to the model’s properties
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and parameters. Figure 11 is a tornado plot that shows the effects of varying individual
properties by ±10% on the predicted proton flux under fuel-cell polarization. The nominal
model-predicted proton flux is JOH•O

= 0.1036 mol s−1 m−2. Under these conditions,
the highest sensitivities were found to be the activation energy of the proton diffusion
coefficient EOH•O

, the enthalpy of the steam-incorporation reaction ∆H◦H2O, the activation
energy of the vacancy diffusion coefficient EV••O

, and the entropy of the steam-incorporation
reaction ∆S◦H2O.

i = 1 A cm−2

5 15−5−15 0

−10%
10%

T = 600°C

Figure 11. Sensitivity of steady-state fuel-cell proton flux to 10% changes in electro-chemo-mechanical
properties. The imposed current density is i = 1 A cm−2.

Figure 12 is a tornado plot showing sensitivities of model-predicted maximum hy-
drostatic stress to model parameters. The cell is operating at 600 ◦C with an imposed
fuel-cell current density of i = 1 A cm−2. Under these conditions, the nominal maximum
hydrostatic stress is σh = 128.7 MPa. The highest sensitivities are to the thermodynamic
properties (enthalpy ∆H◦ and entropy ∆S◦) of the defect-incorporation reactions. Interest-
ingly, mechanical properties (e.g., Young’s modulus, Em) show relatively small sensitivity.
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−10%
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−200 −100 100 2000

Figure 12. Sensitivity of maximum hydrostatic stress to 10% changes in electro-chemo-mechanical
properties. The imposed current density is i = 1 A cm−2.
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The present model uses best-available properties [4]. However, results of the sensitivity
analysis point to needs for measuring, improving, and validating thermodynamic and
transport properties. Such research is ongoing, but is a long-term process.

5. Summary and Conclusions

The performance of BZY20 as a proton-conducting fuel-cell or electrolysis membrane
is simulated using an extended Nernst–Planck model. The model considers the one-
dimensional radial behavior in a long tubular cell. The Nernst–Planck fluxes depend on
local gradients of defect concentration, electrostatic potential, and hydrostatic stress. The
model predicts transient and steady state profiles of defect concentrations and stress within
a thin (10 µm) BZY20 membrane that is supported on a relatively thick porous Ni/BZY20
composite electrode. The present model concentrates on defect transport within the dense
membrane, assuming ideal electrodes. In other words, charge-transfer polarization at the
electrodes is neglected. The three charged defects (protons, oxygen vacancies, and small po-
larons) are incorporated into the membrane via equilibrated defect-incorporation reactions.

An important measure of membrane performance is the proton flux. However, as a
practical matter, internal stresses are also important because of potential damage mech-
anisms with brittle ceramic materials. The present model couples the electrochemical
performance and chemo-mechanical performance. A sensitivity analysis reveals an ongo-
ing need to validate material-specific thermodynamic, transport, and mechanical properties,
thus improving predictive capabilities of the models.
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