Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Nanofiltration Membranes
2.3. Membrane Characterization
2.4. Nanofiltration Performance Test
3. Results and Discussion
3.1. Physical Structures of the SA–TFC Membranes
3.2. Chemical Composition of the SA–TFC Nanofiltration Membranes
3.3. Surface Properties of the SA–TFC Nanofiltration Membranes
3.4. Nanofiltration Properties of the SA–TFC Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Aziz, M.; Ojumu, T. Exclusion of estrogenic and androgenic steroid hormones from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application. Membranes 2020, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Nunes, S.P.; Culfaz-Emecen, P.Z.; Ramon, G.Z.; Visser, T.; Koops, G.H.; Jin, W.; Ulbricht, M. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. J. Membr. Sci. 2020, 598, 117761. [Google Scholar] [CrossRef]
- Freger, V. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study. Environ. Sci. Technol. 2004, 38, 3168–3175. [Google Scholar] [CrossRef]
- Zhang, F.; Fan, J.-b.; Wang, S. Interfacial polymerization: From chemistry to functional materials. Angew. Chem. Int. Ed. 2020, 59, 21840–21856. [Google Scholar] [CrossRef]
- Lu, X.; Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: History, current efforts, and future directions. Chem. Soc. Rev. 2021. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, H.; Tang, C.Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J. Membr. Sci. 2019, 590, 117297. [Google Scholar] [CrossRef]
- Ma, M.-Q.; Zhang, C.; Zhu, C.-Y.; Huang, S.; Yang, J.; Xu, Z.-K. Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance. J. Membr. Sci. 2019, 591, 117316. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, H.; Yao, Z.K.; Mei, Y.; Tang, C.Y. Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes. Environ. Sci. Technol. 2019, 53, 5301–5308. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wu, Q.; Ye, C.; Wang, W.; Zheng, L.; Dong, F.; Yi, Z.; Xue, L.; Gao, C. Nanovoid membranes embedded with hollow zwitterionic nanocapsules for a superior desalination performance. Nano Lett. 2019, 19, 2953–2959. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.B.M.Y.; Deang, A.B.G.; Aquino, R.R.; Basilia, B.A.; Huang, S.-H.; Lee, K.-R.; Lai, J.-Y. Assessing the performance of thin-film nanofiltration membranes with embedded montmorillonites. Membranes 2020, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Karan, S.; Livingston, A.G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv. Mater. 2018, 30, e1705973. [Google Scholar] [CrossRef]
- Liu, C.; Yang, J.; Guo, B.-B.; Agarwal, S.; Greiner, A.; Xu, Z.-K. Interfacial polymerization at the alkane/ionic liquid interface. Angew. Chem. Int. Ed. 2021, 60, 2–9. [Google Scholar]
- Ma, Z.Y.; Zhang, X.; Liu, C.; Dong, S.N.; Yang, J.; Wu, G.P.; Xu, Z.K. Polyamide nanofilms synthesized via controlled interfacial polymerization on a “jelly” surface. Chem. Commun. 2020, 56, 7249–7252. [Google Scholar] [CrossRef]
- Lv, Y.; Du, Y.; Yang, S.J.; Wu, J.; Xu, Z.-K. Polymer nanofiltration membranes via controlled surface/interface engineering. Acta Polym. Sinica 2017, 12, 1905–1914. [Google Scholar]
- Sarkar, P.; Modak, S.; Karan, S. Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration. Adv. Funct. Mater. 2020, 31, 2007054. [Google Scholar] [CrossRef]
- Karan, S.; Jiang, Z.; Livingston, A.G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 2015, 348, 1347–1351. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.; Li, P.; Wang, H.; Wang, M.; Jiang, C.; Hou, Y.; Li, P.; Jason Niu, Q. Construction of a gelatin scaffold with water channels for preparing a high performance nanofiltration membrane. Sep. Purif. Technol. 2021, 264, 118391. [Google Scholar] [CrossRef]
- Wu, M.-B.; Lv, Y.; Yang, H.-C.; Liu, L.-F.; Zhang, X.; Xu, Z.-K. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. J. Membr. Sci. 2016, 515, 238–244. [Google Scholar] [CrossRef]
- Gao, S.; Zhu, Y.; Gong, Y.; Wang, Z.; Fang, W.; Jin, J. Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving. ACS Nano 2019, 13, 5278–5290. [Google Scholar] [CrossRef]
- Yu, J.-C.; Ma, M.-Q.; Zhu, C.-Y.; Hu, D.-F.; Ji, J.; Xu, Z.-K. MoS2 membranes with photothermal conversion property for nanofiltration and antibacterial activity. Acta Polym. Sinica 2021, 52, 505–513. [Google Scholar]
- Wang, Z.; Wang, Z.; Lin, S.; Jin, H.; Gao, S.; Zhu, Y.; Jin, J. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat. Commun. 2018, 9, 2004. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Wang, Z.; Cong, S.; Zhu, J.; Zhang, X.; Zhang, Y. Root-like polyamide membranes with fast water transport for high-performance nanofiltration. J. Mater. Chem. A 2020, 8, 25028–25034. [Google Scholar] [CrossRef]
- Wang, J.-J.; Yang, H.-C.; Wu, M.-B.; Zhang, X.; Xu, Z.-K. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance. J. Mater. Chem. A 2017, 5, 16289–16295. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, C.; Zhong, Q.-Z.; Yang, X.; Wu, J.; Xu, Z.-K. Ultrathin alginate coatings as selective layers for nanofiltration membranes with high performance. ChemSusChem 2017, 10, 2788–2795. [Google Scholar] [CrossRef]
- Han, H.; Dai, R.; Wang, Z. Fabrication of high-performance thin-film composite nanofiltration membrane by dynamic calcium-carboxyl intra-bridging during post-treatment. Membranes 2020, 10, 137. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, F.; Zhao, C.; Wang, S.; Liu, M.; Jiang, L. Superspreading on immersed gel surfaces for the confined synthesis of thin polymer films. Angew. Chem. Int. Ed. 2016, 55, 3615–3619. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, G.; Zhu, J.; Mamrol, N.; Liu, S.; Mai, Z.; Van Puyvelde, P.; Van der Bruggen, B. Hydrogel assisted interfacial polymerization for advanced nanofiltration membranes. J. Mater. Chem. A 2020, 8, 3238–3245. [Google Scholar] [CrossRef]
- Tanninen, J.; Mänttäri, M.; Nyström, M. Effect of salt mixture concentration on fractionation with NF membranes. J. Membr. Sci. 2006, 283, 57–64. [Google Scholar] [CrossRef]
- Nicolini, J.V.; Borges, C.P.; Ferraz, H.C. Selective rejection of ions and correlation with surface properties of nanofiltration membranes. Sep. Purif. Technol. 2016, 171, 238–247. [Google Scholar] [CrossRef]
- Li, Y.; Wong, E.; Mai, Z.; Van der Bruggen, B. Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination. J. Membr. Sci. 2019, 592, 117396. [Google Scholar] [CrossRef]
- Qin, D.; Huang, G.; Terada, D.; Jiang, H.; Ito, M.M.; Gibbons, H.A.; Igarashi, R.; Yamaguchi, D.; Shirakawa, M.; Sivaniah, E.; et al. Nanodiamond mediated interfacial polymerization for high performance nanofiltration membrane. J. Membr. Sci. 2020, 603, 118003. [Google Scholar] [CrossRef]
- Liu, S.; Wu, C.; Hung, W.-S.; Lu, X.; Lee, K.-R. One-step constructed ultrathin Janus polyamide nanofilms with opposite charges for highly efficient nanofiltration. J. Mater. Chem. A 2017, 5, 22988–22996. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Li, Q.; Wang, Y.; Tan, C.H.; Wang, R. Rapid co-deposition of graphene oxide incorporated metal-phenolic network/piperazine followed by crosslinking for high flux nanofiltration membranes. J. Membr. Sci. 2019, 588, 117203. [Google Scholar] [CrossRef]
- Zhang, H.-Z.; Xu, Z.-L.; Tang, Y.-J.; Ding, H. Highly chlorine-tolerant performance of three-channel capillary nanofiltration membrane with inner skin layer. J. Membr. Sci. 2017, 527, 111–120. [Google Scholar] [CrossRef]
- Tang, Y.-J.; Xu, Z.-L.; Xue, S.-M.; Wei, Y.-M.; Yang, H. Tailoring the polyester/polyamide backbone stiffness for the fabrication of high performance nanofiltration membrane. J. Membr. Sci. 2017, 541, 483–491. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, S.; Shi, W.; Wang, W.; Wang, X.; Zhang, Z.; Li, L.; Zhang, B.; Bao, X. A novel polyesteramide thin film composite nanofiltration membrane prepared by interfacial polymerization of serinol and trimesoyl chloride (TMC) catalyzed by 4-dimethylaminopyridine (DMAP). J. Membr. Sci. 2017, 542, 68–80. [Google Scholar] [CrossRef]
- Akbari, A.; Aliyarizadeh, E.; Mojallali Rostami, S.M.; Homayoonfal, M. Novel sulfonated polyamide thin-film composite nanofiltration membranes with improved water flux and anti-fouling properties. Desalination 2016, 377, 11–22. [Google Scholar] [CrossRef]
- Shi, Q.; Ni, L.; Zhang, Y.; Feng, X.; Chang, Q.; Meng, J. Poly(p-phenylene terephthamide) embedded in a polysulfone as the substrate for improving compaction resistance and adhesion of a thin film composite polyamide membrane. J. Mater. Chem. A 2017, 5, 13610–13624. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, Y.; Qiu, W.-Z.; He, A.; Xu, Z.-K. Polydopamine coatings with nanopores for versatile molecular separation. ACS Appl. Mater. Interfaces 2017, 9, 14437–14444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lv, Y.; Yang, H.-C.; Du, Y.; Xu, Z.-K. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance. ACS Appl. Mater. Interfaces 2016, 8, 32512–32519. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.-M.; Xu, Z.-L.; Tang, Y.-J.; Ji, C.-H. Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs). ACS Appl. Mater. Interfaces 2016, 8, 19135–19144. [Google Scholar] [CrossRef] [PubMed]
- Lai, G.S.; Lau, W.J.; Gray, S.R.; Matsuura, T.; Gohari, R.J.; Subramanian, M.N.; Lai, S.O.; Ong, C.S.; Ismail, A.F.; Emazadah, D.; et al. A practical approach to synthesize polyamide thin film nanocomposite (TFN) membranes with improved separation properties for water/wastewater treatment. J. Mater. Chem. A 2016, 4, 4134–4144. [Google Scholar] [CrossRef]
- Zheng, J.; Li, M.; Yu, K.; Hu, J.; Zhang, X.; Wang, L. Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property. J. Membr. Sci. 2017, 524, 344–353. [Google Scholar] [CrossRef]
Sample | Element Content (Atomic, %) | O/N | Theoretical Degree of Cross-Linking (%) 1 | |||
---|---|---|---|---|---|---|
C | N | O | Ca | |||
TFC−Control | 71.80 | 10.76 | 17.44 | / | 1.62 | 29.01 |
SA-3.8 | 73.75 | 10.47 | 15.86 | 0.33 | 1.51 | 39.06 |
SA-7.8 | 74.48 | 10.26 | 14.85 | 0.41 | 1.45 | 44.84 |
SA-11.6 | 73.41 | 10.54 | 15.49 | 0.56 | 1.47 | 42.92 |
SA-15.5 | 71.48 | 11.52 | 16.04 | 0.96 | 1.39 | 53.19 |
Ref. | Water Permeance (Lm−2h−1bar−1) | Rejection to Na2SO4 (%) | A/B | Operating Pressure (bar) | Salt Concentration (g/L) |
---|---|---|---|---|---|
SA-15.5 | 30.27 | 97.2 | 8.9 | 4 | 2 |
NF90 [33] | 4.69 | 95 | 4 | 5 | 3.55 |
NF270 [34] | 13.68 | 96.1 | 1.71 | 15 | 0.99 |
Desal-5 DK [35] | 6.05 | 99.6 | 16.6 | 15 | 0.99 |
[19] | 24.79 | 99.6 | 52.07 | 4.8 | 2 |
[24] | 40 | 96.5 | 4.76 | 6 | 1 |
[27] | 48 | 93.9 | 4.1 | 4 | 1 |
[32] | 52.8 | 96.4 | 6.94 | 4 | 1 |
[36] | 15 | 98 | 5 | 6 | 1.42 |
[28] | 34 | 96.7 | 5.05 | 6 | 1 |
[37] | 25.7 | 96 | 7.14 | 3.5 | 1 |
[38] | 21.7 | 84 | 3.125 | 2 | 1 |
[39] | 9 | 98.6 | 17.85 | 4 | 2 |
[40] | 12 | 96.6 | 4.9 | 6 | 2 |
[41] | 13.2 | 96.8 | 5.21 | 6 | 1 |
[42] | 7.5 | 96.4 | 4.63 | 6 | 1 |
[43] | 6.9 | 97.6 | 6.94 | 6 | 2 |
[44] | 10.5 | 98 | 8.33 | 6 | 2 |
[45] | 10.1 | 91 | 1.85 | 6 | 1 |
[46] | 8.5 | 99.1 | 22.22 | 5 | 1 |
[47] | 20.4 | 95.6 | 7.58 | 3 | 1 |
[48] | 6 | 96.3 | 5.41 | 5 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.-Y.; Xue, Y.-R.; Xu, Z.-K. Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes. Membranes 2021, 11, 435. https://doi.org/10.3390/membranes11060435
Ma Z-Y, Xue Y-R, Xu Z-K. Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes. Membranes. 2021; 11(6):435. https://doi.org/10.3390/membranes11060435
Chicago/Turabian StyleMa, Zhao-Yu, Yu-Ren Xue, and Zhi-Kang Xu. 2021. "Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes" Membranes 11, no. 6: 435. https://doi.org/10.3390/membranes11060435
APA StyleMa, Z. -Y., Xue, Y. -R., & Xu, Z. -K. (2021). Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes. Membranes, 11(6), 435. https://doi.org/10.3390/membranes11060435