Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis
Abstract
:1. Introduction
2. Modelling of Solution Hydrodynamics
3. Methodology
3.1. Materials
3.2. Experimental Procedure
3.2.1. Fabrication of the Membrane Support Layer
3.2.2. Interfacial Polymerization of the TFC FO Membranes
3.3. Characterization of the TFC FO Membranes
3.3.1. Scanning Electron Microscopy (SEM)
3.3.2. Contact angle (CA) Measurements
3.3.3. Porosity Measurements
3.3.4. Fourier Transform Infrared Spectroscopy (FTIR)
3.3.5. Reverse Osmosis (RO) Experiments
3.4. FO Experiments
Bench-Scale System
4. Results and Discussion
4.1. Effect of the PSf:PES Ratio on PA Structure
4.2. Effect of the PSf:PES Ratio on the Overall Membrane Wettability
4.3. Effect of the PSf:PES Ratios on the Functional Group Analysis of the PA Layer
4.4. Effect of the PSf:PES Ratio on Membrane Porosity
4.5. Determination of Water and Solute Permeability Coefficients A and B
4.6. Effect of Temperature on the FO Performances of the TFC FO Membranes
4.7. Effect of Bulk Temperature on the Structural Parameter S
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Water permeability coefficient |
Am | Effective area of membrane |
B | Salt permeability coefficient |
C | Solute concentration |
CA | Contact angle |
cECP | Concentrative external concentration polarization |
Cf | Concentration of feed |
Cp | Concentration of permeate |
D | Diffusion coefficient |
d | Channel diameter |
dh | Hydraulic diameter of flow channel |
dICP | Dilutive internal concentration polarization |
DS | Draw solution |
FO | Forward osmosis |
FS | Feed solution |
FTIR | Fourier transform infrared |
i | Van’t Hoff factor |
ICP | Internal concentration polarization |
Js | Salt flux |
Jw | Water flux |
k | Mass transfer coefficient |
K | Mass resistance coefficient |
MW | Molecular weight |
η | Dynamic viscosity of solution |
NaCl | Sodium chloride |
NMP | N-methyl-2-pyrrolidone |
P | Pressure |
PA | Polyamide |
PEG | Polyethylene glycol |
PES | Polyethersulfone |
PPD | 1,4-phenylenediamine |
PSf | Polysulfone |
R | Salt rejection |
Re | Reynolds number |
Rg | Gas constant |
RO | Reverse osmosis |
RSF | Reverse salt flux |
S | Structural parameter |
Sc | Schmidt number |
Seff | Effective structural parameter |
Seff,FO | Effective structural parameter in forward osmosis |
SEM | Scanning electronic microscopy |
Sh | Sherwood number |
Sint | Intrinsic structural parameter |
T | Absolute temperature |
t | Membrane thickness |
TFC | Thin film composite |
TFC FO | Thin film composite forward osmosis |
TMC | Trimesoyl chloride |
TR | Normalized temperature |
v | Flow velocity in channel |
X | Length of flow channel |
β | Boltzmann constant |
ε | Membrane porosity |
μ | Kinematic viscosity of solution |
μw | Kinematic viscosity of water |
π | Osmotic pressure |
πD,b | Osmotic pressure of bulk draw solution |
πD,M | Osmotic pressure at the membrane surface of draw side |
πF,b | Osmotic pressure of bulk feed solution |
πF,M | Osmotic pressure at the membrane surface of feed side |
ρ | density |
τ | Membrane tortuosity |
References
- Shin, S.; Kim, A.S. Temperature Effect on Forward Osmosis. In Osmotically Driven Membrane Processes—Approach, Development and Current Status; InTech: London, UK, 2018; pp. 87–110. [Google Scholar]
- Wong, M.C.Y.; Martinez, K.; Ramon, G.Z.; Hoek, E.M.V. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance. Desalination 2012, 287, 340–349. [Google Scholar] [CrossRef]
- Wu, K.; Liu, Z.; Yu, H.; Kang, G.; Jie, X.; Jin, Y.; Cao, Y. Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component. J. Membr. Sci. 2016, 497, 485–493. [Google Scholar]
- Manickam, S.S.; McCutcheon, J.R. Model thin film composite membranes for forward osmosis: Demonstrating the inaccuracy of existing structural parameter models. J. Membr. Sci. 2015, 483, 70–74. [Google Scholar] [CrossRef]
- Logan, B.E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; McCutcheon, J.R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. J. Membr. Sci. 2015, 483, 25–33. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, J.; Ren, Z.; Shi, W.; Zhang, Z.; Xu, Y.; Gao, S.; Cui, F. High performance thin-film composite (TFC) forward osmosis (FO) membrane fabricated on novel hydrophilic disulfonated poly(arylene ether sulfone) multiblock copolymer/polysulfone substrate. J. Membr. Sci. 2016, 520, 529–539. [Google Scholar] [CrossRef]
- Kang, P.K.; Lee, W.; Lee, S.; Kim, A.S. Origin of structural parameter inconsistency in forward osmosis models: A pore-scale CFD study. Desalination 2017, 421, 47–60. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, X.; Tian, L.; Li, Z.; Ding, C.; Yi, M.; Han, C.; Yu, X.; Wang, Y. Constructing substrate of low structural parameter by salt induction for high- performance TFC-FO membranes. J. Membr. Sci. 2020, 600, 117866. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Z.; Li, J.; Tang, Q.; Hu, Y. Modeling and measurement of temperature and draw solution concentration induced water flux increment efficiencies in the forward osmosis membrane process. Desalination 2019, 452, 75–86. [Google Scholar] [CrossRef]
- Peinemann, K.; Gerstandt, K.; Skilhagen, S.E.; Thorsen, T. Membranes for Power Generation by Pressure Retarded Osmosis. In Membranes for Energy Conversion; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 263–274. [Google Scholar]
- Phuntsho, S.; Hong, S.; Elimelech, M.; Kyong, H. Osmotic equilibrium in the forward osmosis process: Modelling, experiments and implications for process performance. J. Membr. Sci. 2014, 453, 240–252. [Google Scholar] [CrossRef]
- Jeffrey, T.M.; Kolliopoulos, G.; Papangelakis, V.G. An improved model for membrane characterization in forward osmosis. J. Membr. Sci. 2019, 598, 117668. [Google Scholar]
- Manickam, S.S.; Gelb, J.; McCutcheon, J.R. Pore structure characterization of asymmetric membranes: Non-destructive characterization of porosity and tortuosity. J. Membr. Sci. 2014, 454, 549–554. [Google Scholar] [CrossRef]
- Ali, W.; James, D.; Sarp, S.; Hilal, N. Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination 2018, 436, 176–201. [Google Scholar]
- Tiraferri, A.; Yip, N.Y.; Straub, A.P.; Castrillon, S.R. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. J. Membr. Sci. 2013, 444, 523–538. [Google Scholar] [CrossRef]
- Cath, T.Y.; Elimelech, M.; Mccutcheon, J.R.; Mcginnis, R.L.; Achilli, A.; Anastasio, D.; Brady, A.R.; Childress, A.E.; Farr, I.V.; Hancock, N.T.; et al. Standard Methodology for Evaluating Membrane Performance in Osmotically Driven Membrane Processes. Desalination 2013, 312, 31–38. [Google Scholar] [CrossRef] [Green Version]
- D’Haese, A.K.H.; Motsa, M.M.; Van der Meeren, P.; Verliefde, A.R.D. A refined draw solute flux model in forward osmosis: Theoretical considerations and experimental validation. J. Membr. Sci. 2017, 522, 316–331. [Google Scholar] [CrossRef]
- Abdelkader, B.; Sharqawy, M.H. Temperature Effects and Entropy Generation of pressure retarded osmosis process. Entropy 2019, 21, 1158. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xue, L.; Zhang, Y.; Zhao, X.; Huang, Y.; Du, X. High flux polyamide thin film composite forward osmosis membranes prepared from porous substrates made of polysulfone and polyethersulfone blends. Desalination 2014, 336, 72–79. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; Elimelech, M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 2006, 284, 237–247. [Google Scholar] [CrossRef]
- Chou, S.; Wang, R.; Shi, L.; She, Q.; Tang, C.; Gordon, A. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. J. Membr. Sci. 2012, 389, 25–33. [Google Scholar] [CrossRef]
- Touati, K.; Hänel, C.; Tadeo, F.; Schiestel, T. Effect of the feed and draw solution temperatures on PRO performance: Theoretical and experimental study. Desalination 2015, 365, 182–195. [Google Scholar] [CrossRef]
- Touati, K.; Tadeo, F.; Hänel, C.; Schiestel, T. Effect of the operating temperature on hydrodynamics and membrane parameters in pressure retarded osmosis. Desalination Water Treat. 2016, 57, 10477–10489. [Google Scholar] [CrossRef]
- Shokrollahzadeh, S.; Tajik, S. Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/polyacrylonitrile blend nanofibers as porous substrate. Desalination 2018, 425, 68–76. [Google Scholar] [CrossRef]
- Shokrgozar Eslah, S.; Shokrollahzadeh, S.; Moini Jazani, O.; Samimi, A. Forward osmosis water desalination: Fabrication of graphene oxide-polyamide/polysulfone thin-film nanocomposite membrane with high water flux and low reverse salt diffusion. Sep. Sci. Technol. 2018, 53, 573–583. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Hoek, E.M.V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. J. Membr. Sci. 2009, 336, 140–148. [Google Scholar] [CrossRef]
- Phuong, T.; Nguyen, N.; Yun, E.; Kim, I.; Kwon, Y. Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis. J. Membr. Sci. 2013, 433, 49–59. [Google Scholar]
- Fathizadeh, M.; Aroujalian, A.; Raisi, A. Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers. Desalination 2012, 284, 32–41. [Google Scholar] [CrossRef]
- Jin, Y.; Su, Z. Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films. J. Membr. Sci. 2009, 330, 175–179. [Google Scholar] [CrossRef]
- Soroush, A.; Barzin, J.; Barikani, M.; Fathizadeh, M. Interfacially polymerized polyamide thin film composite membranes: Preparation, characterization and performance evaluation. Desalination 2012, 287, 310–316. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F. Flat-Sheet Membrane for Power Generation and Desalination Based on Salinity Gradient. In Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation; Elsevier B.V.: Amsterdam, The Netherlands, 2018; pp. 155–174. [Google Scholar]
- Widjojo, N.; Chung, T. Thickness and Air Gap Dependence of Macrovoid Evolution in Phase-Inversion Asymmetric Hollow Fiber Membranes. Ind. Eng. Chem. Res. 2006, 45, 7618–7626. [Google Scholar] [CrossRef]
- Bano, S.; Mahmood, A.; Kim, S.J.; Lee, K.H. Graphene oxide modified polyamide nanofiLation membrane with improved flux and antifouling properties. J. Mater. Chem. A 2015, 3, 2065–2071. [Google Scholar] [CrossRef]
- Jun, B.M.; Yoon, Y.; Park, C.M. Post-treatment of nanofiltration polyamide membrane through alkali-catalyzed hydrolysis to treat dyes in model wastewater. Water 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, L.; Xu, T. Synthesis and properties of side-chain-type sulfonated poly(phenylene oxide) for proton exchange membranes. J. Membr. Sci. 2011, 373, 160–166. [Google Scholar] [CrossRef]
- Sharma, J.; Tewari, K.; Arya, R.K. Diffusion in polymeric systems—A review on free volume theory. Prog. Org. Coat. 2017, 111, 83–92. [Google Scholar] [CrossRef]
- Fabian, R.; Guerrero, E.; Rosas, E.R.; Lugo, V.R. Nonlinear changes in pore size induced by temperature in the design of smart membranes. Polym. J. 2010, 42, 947–951. [Google Scholar]
- Selakjani, P.P.; Peyravi, M.; Jahanshahi, M.; Hoseinpour, H.; Rad, A.S. Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers. Front. Chem. Sci. Eng. 2018, 12, 174–183. [Google Scholar] [CrossRef]
- Hong, T.; Ngo, A.; The, D.; Dinh, K.; Thi, T.; Nguyen, M. Surface modification of polyamide thin film composite membrane by coating of titanium dioxide nanoparticles. J. Sci. Adv. Mater. Devices 2016, 1, 468–475. [Google Scholar]
- She, Q.; Jin, X.; Tang, C.Y. Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion. J. Membr. Sci. 2012, 401–402, 262–273. [Google Scholar] [CrossRef]
- Lim, S.; Park, M.J.; Phuntsho, S.; Tijing, L.D.; Nisola, G.M.; Shim, W.; Chung, W.; Shon, H.K. Dual-layered nanocomposite membrane based on polysulfone/graphene oxide for mitigating internal concentration polarization in forward osmosis. Polymer 2017, 110, 36–48. [Google Scholar] [CrossRef]
- Xie, M.; Price, W.E.; Nghiem, L.D.; Elimelech, M. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis. J. Membr. Sci. 2013, 438, 57–64. [Google Scholar] [CrossRef] [Green Version]
Substrate Label | TFC FO Label | PSf (wt.%) | PES (wt.%) |
---|---|---|---|
S1 | MS1 | 18 | 0 |
S2 | MS2 | 10.8 | 7.2 |
S3 | MS3 | 0 | 18 |
S1 | MS1 | S2 | MS2 | S3 | MS3 | |
---|---|---|---|---|---|---|
Contact angle (°) | 81.9 ± 0.6 | 65.2 ± 5.4 | 75.3 ± 1.7 | 64.5 ± 7.8 | 75.5 ± 0.4 | 66.6 ± 3.5 |
Temperature, °C | 30 | 35 | 40 |
---|---|---|---|
Density ρ | 997.2 | 995.6 | 993.7 |
Osmotic pressure π, in bar | 1.713 | 1.741 | 1.769 |
Kinematic viscosity | |||
Diffusivity D | |||
Mass transfer k, in m s−1 | |||
Mass resistance K, in s m−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sark, J.F.; Jullok, N.; Lau, W.J. Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis. Membranes 2021, 11, 448. https://doi.org/10.3390/membranes11060448
Sark JF, Jullok N, Lau WJ. Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis. Membranes. 2021; 11(6):448. https://doi.org/10.3390/membranes11060448
Chicago/Turabian StyleSark, Jin Fei, Nora Jullok, and Woei Jye Lau. 2021. "Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis" Membranes 11, no. 6: 448. https://doi.org/10.3390/membranes11060448
APA StyleSark, J. F., Jullok, N., & Lau, W. J. (2021). Improving the Structural Parameter of the Membrane Sublayer for Enhanced Forward Osmosis. Membranes, 11(6), 448. https://doi.org/10.3390/membranes11060448