COMTOP: Protein Residue–Residue Contact Prediction through Mixed Integer Linear Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
2.2. Method Description
2.2.1. List of the Sets, Parameters and Variables
- (I)
- Indices and sets
- (II)
- Parameters
- (III)
- Binary variables
- (IV)
- Positive variables
2.2.2. The Training Objective Function
2.2.3. The Model Constraints
2.2.4. The Prediction Score and Prediction Label
2.2.5. The Training and Prediction Procedure
2.2.6. Evaluation Measures for Prediction Performance
3. Results
3.1. Performance Evaluation Based on the Training Set
3.2. Performance Evaluation Based on the Independent Set
3.3. Testing on CASP13 Targets
3.3.1. Comparison of COMTOP’s Performance with the Seven Individual Methods
3.3.2. Comparison of COMTOP’s Performance with a Few State-of-the-Art Schemes
3.4. Testing on CASP14 Targets
3.4.1. Performance Comparison of COMTOP against the Seven Individual Methods
3.4.2. Performance Comparison of COMTOP against State-of-the-Art Methods
3.5. Testing on the Independent TM Test Set
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MILP | Mixed integer linear programming |
CASP | Critical assessment of protein structure prediction |
PPV | Positive predictive value |
L | Length of the protein sequence |
PDB | Protein Data Bank |
TP | True positive |
FP | False positive |
MSA | Multiple sequence alignment |
TM | Transmembrane protein |
References
- Miller, C.S.; Eisenberg, D. Using inferred residue contacts to distinguish between correct and incorrect protein models. Bioinformatics 2008, 24, 1575–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Eickholt, J.; Cheng, J. APOLLO: A quality assessment service for single and multiple protein models. Bioinformatics 2011, 27, 1715–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliger, Y.; Levy, O.; Oren, A.; Ashkenazy, H.; Tiran, Z.; Novik, A.; Rosenberg, A.; Amir, A.; Wool, A.; Toporik, A.; et al. Peptides modulating conformational changes in secreted chaperones: From in silico design to preclinical proof of concept. Proc. Natl. Acad. Sci. USA 2009, 106, 13797–13801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, D.S.; Colwell, L.J.; Sheridan, R.; Hopf, T.A.; Pagnani, A.; Zecchina, R.; Sander, C. Protein 3D Structure Computed from Evolutionary Sequence Variation. PLoS ONE 2011, 6, e28766. [Google Scholar] [CrossRef] [Green Version]
- Nugent, T.; Jones, D.T. Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis. Proc. Natl. Acad. Sci. USA 2012, 109, E1540–E1547. [Google Scholar] [CrossRef] [Green Version]
- Sułkowska, J.I.; Morcos, F.; Weigt, M.; Hwa, T.; Onuchic, J.N. Genomics-aided structure prediction. Proc. Natl. Acad. Sci. USA 2012, 109, 10340–10345. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.E.; Di Maio, F.; Wang, R.Y.-R.; Song, Y.; Baker, D. One contact for every twelve residues allows robust and accurate topology-level protein structure modeling. Prot. Struct. Funct. Bioinform. 2014, 82, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Kosciolek, T.; Jones, D.T. De Novo Structure Prediction of Globular Proteins Aided by Sequence Variation-Derived Contacts. PLoS ONE 2014, 9, e92197. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 2015, 12, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Ovchinnikov, S.; Kim, D.E.; Wang, R.Y.-R.; Liu, Y.; Di Maio, F.; Baker, D. Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta. Proteins Struct. Funct. Bioinform. 2016, 84, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Vendruscolo, M.; Domany, E. Protein folding using contact maps. Vitam. Hormon. 2000, 58, 171–212. [Google Scholar] [CrossRef]
- Mirny, L.; Domany, E. Protein fold recognition and dynamics in the space of contact maps. Prot. Struct. Funct. Genet. 1996, 26, 391–410. [Google Scholar] [CrossRef]
- Ekeberg, M.; Lövkvist, C.; Lan, Y.; Weigt, M.; Aurell, E. Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models. Phys. Rev. E 2013, 87, 012707. [Google Scholar] [CrossRef] [Green Version]
- Eickholt, J.; Cheng, J. A study and benchmark of DNcon: A method for protein residue-residue contact prediction using deep networks. BMC Bioinform. 2013, 14, S12. [Google Scholar] [CrossRef] [Green Version]
- Seemayer, S.; Gruber, M.; Söding, J. CCMpred—Fast and precise prediction of protein residue–residue contacts from correlated mutations. Bioinformatics 2014, 30, 3128–3130. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.T.; Singh, T.; Kosciolek, T.; Tetchner, S. MetaPSICOV: Combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics 2015, 31, 999–1006. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Deng, M.; Wang, C.; Zhu, J.; Li, S.C.; Zheng, W.-M.; Bu, D. Improving residue–residue contact prediction via low-rank and sparse decomposition of residue correlation matrix. Biochem. Biophys. Res. Commun. 2016, 472, 217–222. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Q.; Bei, Z.; Wei, Y.; Floudas, C.A. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming. Proteins Struct. Funct. Bioinform. 2016, 84, 332–348. [Google Scholar] [CrossRef]
- Jones, D.T.; Kandathil, S.M. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformation 2018, 34, 3308–3315. [Google Scholar] [CrossRef]
- Michel, M.; Hurtado, D.M.; Elofsson, A. PconsC4: Fast, accurate and hassle-free contact predictions. Bioinformation 2019, 35, 2677–2679. [Google Scholar] [CrossRef]
- Jones, D.T.; Buchan, D.W.A.; Cozzetto, D.; Pontil, M. PSICOV: Precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformation 2011, 28, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Kamisetty, H.; Ovchinnikov, S.; Baker, D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. Proc. Natl. Acad. Sci. USA 2013, 110, 15674–15679. [Google Scholar] [CrossRef] [Green Version]
- Kaján, L.; Hopf, T.A.; Kalaš, M.; Marks, D.S.; Rost, B. FreeContact: Fast and free software for protein contact prediction from residue co-evolution. BMC Bioinform. 2014, 15, 85. [Google Scholar] [CrossRef] [Green Version]
- Baldassi, C.; Zamparo, M.; Feinauer, C.; Procaccini, A.; Zecchina, R.; Weigt, M.; Pagnani, A. Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners. PLoS ONE 2014, 9, e92721. [Google Scholar] [CrossRef]
- Björkholm, P.; Daniluk, P.; Kryshtafovych, A.; Fidelis, K.; Andersson, R.; Hvidsten, T.R. Using multi-data hidden Markov models trained on local neighborhoods of protein structure to predict residue–residue contacts. Bioinformation 2009, 25, 1264–1270. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Baldi, P. Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinform. 2007, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhang, Y. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformation 2008, 24, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Tegge, A.N.; Wang, Z.; Eickholt, J.; Cheng, J. NNcon: Improved protein contact map prediction using 2D-recursive neural networks. Nucleic Acids Res. 2009, 37, W515–W518. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, S.; Li, Z.; Zhang, R.; Xu, J. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. PLoS Comput. Biol. 2017, 13, e1005324. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, B.; Hou, J.; Cheng, J. DNCON2: Improved protein contact prediction using two-level deep convolutional neural networks. Bioinformation 2018, 34, 1466–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, J.; Paliwal, K.; Litfin, T.; Yang, Y.; Zhou, Y. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks. Bioinformation 2018, 34, 4039–4045. [Google Scholar] [CrossRef]
- Liu, Y.; Palmedo, P.; Ye, Q.; Berger, B.; Peng, J. Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks. Cell Syst. 2018, 6, 65–74.e3. [Google Scholar] [CrossRef] [Green Version]
- Xiong, D.; Zeng, J.; Gong, H. A deep learning framework for improving long-range residue–residue contact prediction using a hierarchical strategy. Bioinformation 2017, 33, 2675–2683. [Google Scholar] [CrossRef] [Green Version]
- Golkov, V.; Skwark, M.J.; Golkov, A.; Dosovitskiy, A.; Brox, T.; Meiler, J.; Cremers, D. Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images. In Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16); Curran Associates Inc.: Red Hook, NY, USA, 2016; pp. 4222–4230. [Google Scholar]
- Liu, Y.; Ye, Q.; Wang, L.; Peng, J. Learning structural motif representations for efficient protein structure search. Bioinformation 2018, 34, i773–i780. [Google Scholar] [CrossRef] [Green Version]
- McAllister, S.R.; Floudas, C.A. An improved hybrid global optimization method for protein tertiary structure prediction. Comput. Optim. Appl. 2010, 45, 377–413. [Google Scholar] [CrossRef] [Green Version]
- Rajgaria, R.; Wei, Y.; Floudas, C.A. Contact prediction for beta and alpha-beta proteins using integer linear optimization and its impact on the first principles 3D structure prediction method ASTRO-FOLD. Prot. Struct. Funct. Bioinform. 2010, 78, 1825–1846. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Floudas, C.A. Enhanced inter-helical residue contact prediction in transmembrane proteins. Chem. Eng. Sci. 2011, 66, 4356–4369. [Google Scholar] [CrossRef] [Green Version]
- Subramani, A.; Wei, Y.; Floudas, C.A. ASTRO-FOLD 2.0: An enhanced framework for protein structure prediction. AIChE J. 2011, 58, 1619–1637. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Li, Y.; Zhang, C.; Pearce, R.; Mortuza, S.M.; Zhang, Y. Deep-learning contact-map guided protein structure prediction in CASP. Proteins Struct. Funct. Bioinform. 2019, 87, 1149–1164. [Google Scholar] [CrossRef] [Green Version]
- Kandathil, S.M.; Greener, J.G.; Jones, D.T. Prediction of inter-residue contacts with DeepMetaPSICOV in CASP13. Proteins Struct. Funct. Bioinform. 2019, 87, 1092–1099. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Sen, T.Z.; Jernigan, R.L.; Kloczkowski, A. Consensus Data Mining (CDM) Protein Secondary Structure Prediction Server: Combining GOR V and Fragment Database Mining (FDM). Bioinformation 2007, 23, 2628–2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Deshpande, A.; Sabarinathan, R.; Senthilkumar, R.; Sekar, K.; Amburi, J. CSSP(Consensus Secondary Structure Prediction): A web-based server for structural biologists. J. Appl. Crystallogr. 2009, 42, 336–338. [Google Scholar] [CrossRef]
- Wei, Y.; Thompson, J.; Floudas, C.A. CONCORD: A consensus method for protein secondary structure prediction via mixed integer linear optimization. Proc. R. Soc. A 2011, 468, 831–850. [Google Scholar] [CrossRef] [Green Version]
- Toussi, C.A.; Haddadnia, J. Improving protein secondary structure prediction: The evolutionary optimized classification algorithms. Struct. Chem. 2019, 30, 1257–1266. [Google Scholar] [CrossRef]
- Xu, J.; Yu, L.; Li, M.; Chen, Y.-P.P.; Wong, L. Consensus fold recognition by predicted model quality. Series on Advances in Bioinformatics and Computational Biology; Imperial College Press: London, UK, 2005; Volume 1, pp. 73–83. [Google Scholar]
- Wu, S.; Zhang, Y. LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Res. 2007, 35, 3375–3382. [Google Scholar] [CrossRef] [Green Version]
- McGuffin, L.J.; Adiyaman, R.; Maghrabi, A.H.A.; Shuid, A.N.; Brackenridge, D.A.; Nealon, J.O.; Philomina, L.S. IntFOLD: An integrated web resource for high performance protein structure and function prediction. Nucleic Acids Res. 2019, 47, W408–W413. [Google Scholar] [CrossRef]
- Liu, B.; Li, C.-C.; Yan, K. DeepSVM-fold: Protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks. Briefings Bioinform. 2019, 21, 1733–1741. [Google Scholar] [CrossRef]
- Kumar, S.; Carugo, O. Consensus Prediction of Protein Conformational Disorder from Amino Acidic Sequence. Open Biochem. J. 2008, 2, 1–5. [Google Scholar] [CrossRef]
- Xue, B.; Dunbrack, R.L.; Williams, R.W.; Dunker, A.K.; Uversky, V.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta Prot. Proteom. 2010, 1804, 996–1010. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, S.; Wang, X.; Liu, B. Identification of Intrinsically Disordered Proteins and Regions by Length-Dependent Predictors Based on Conditional Random Fields. Mol. Ther. Nucleic Acids 2019, 17, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Yang, S.-J.; Kim, S.; Bhak, J. CONSORF: A consensus prediction system for prokaryotic coding sequences. Bioinformatics 2007, 23, 3088–3090. [Google Scholar] [CrossRef]
- Swift, S.; Tucker, A.; Vinciotti, V.; Martin, N.; Orengo, C.; Liu, X.; Kellam, P. Consensus clustering and functional interpretation of gene-expression data. Genome Biol. 2004, 5, R94. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Nadler, W.; Hansmann, U.H.E. Side-chain and backbone ordering in a polypeptide. J. Chem. Phys. 2006, 125, 164902. [Google Scholar] [CrossRef] [Green Version]
- Kar, P.; Wei, Y.; Hansmann, U.H.E.; Höfinger, S. Systematic study of the boundary composition in Poisson Boltzmann calculations. J. Comput. Chem. 2007, 28, 2538–2544. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Nadler, W.; Hansmann, U.H.E. Backbone and side-chain ordering in a small protein. J. Chem. Phys. 2008, 128, 025105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xi, W.; Hansmann, U.H.E.; Wei, Y. Fibril–Barrel Transitions in Cylindrin Amyloids. J. Chem. Theory Comput. 2017, 13, 3936–3944. [Google Scholar] [CrossRef]
- Ma, J.; Wang, S.; Wang, Z.; Xu, J. Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning. Bioinformation 2015, 31, 3506–3513. [Google Scholar] [CrossRef] [Green Version]
- Shiwang, L.; Li, W.; Zhang, R.; Liu, S.; Xu, J. CoinFold: A web server for protein contact prediction and contact-assisted protein folding. Nucleic Acids Res. 2016, 44, W361–W366. [Google Scholar] [CrossRef] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Tunyasuvunakool, K.; Ronneberger, O.; Bates, R.; Žídek, A.; Bridgland, A.; et al. High Accuracy Protein Structure Prediction Using Deep Learning. In Proceedings of the Fourteenth Critical Assessment of Techniques for Protein Structure Prediction (Abstract Book), Online, 30 November–4 December 2020. [Google Scholar]
- Wang, G.; Dunbrack, R.L. PISCES: A protein sequence culling server. Bioinformatics 2003, 19, 1589–1591. [Google Scholar] [CrossRef] [Green Version]
- Rowe, P. Essential Statistics for the Pharmaceutical Sciences. Essent. Stat. Pharmaceut. Sci. 2015, 12, 89–91. [Google Scholar]
- Jessop, A. Let the Evidence Speak: Using Bayesian Thinking in Law, Medicine, Ecology and Other Areas; Springer: New York, NY, USA, 2018; ISBN 9783319713922. [Google Scholar]
- Michel, M.; Hayat, S.; Skwark, M.J.; Sander, C.; Marks, D.S.; Elofsson, A. PconsFold: Improved contact predictions improve protein models. Bioinformatics 2014, 30, i482–i488. [Google Scholar] [CrossRef]
- Adhikari, B.; Bhattacharya, D.; Cao, R.; Cheng, J. CONFOLD: Residue-residue contact-guidedab initioprotein folding. Proteins Struct. Funct. Bioinform. 2015, 83, 1436–1449. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Peng, Z.; Anishchenko, I.; Cong, Q.; Baker, D.; Yang, J. Protein contact prediction using metagenome sequence data and residual neural networks. Bioinformation 2019, 36, 41–48. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Bell, E.W.; Yu, D.; Zhang, Y. Ensembling multiple raw coevolutionary features with deep residual neural networks for contact-map prediction in CASP13. Proteins: Struct. Funct. Bioinform. 2019, 87, 1082–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Hou, J.; Adhikari, B.; Cheng, J. Analysis of several key factors influencing deep learning-based inter-residue contact prediction. Bioinformation 2020, 36, 1091–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Liu, J.; Guo, Z.; Wu, T.; Hou, J.; Cheng, J. Protein model accuracy estimation empowered by deep learning and inter-residue distance prediction in CASP14. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Venkata Subramaniya, S.R.M.; Terashi, G.; Jain, A.; Kagaya, Y.; Kihara, D. Protein Contact Map Denoising Using Generative Adversarial Networks. bioRxiv 2020, 1–26. [Google Scholar] [CrossRef]
- Zhang, H.; Bei, Z.; Xi, W.; Hao, M.; Ju, Z.; Saravanan, K.M.; Zhang, H.; Guo, N.; Wei, Y. Evaluation of residue-residue contact prediction methods: From retrospective to prospective. PLoS Comput. Biol. 2021, 17, e1009027. [Google Scholar] [CrossRef]
- Adhikari, B.; Cheng, J. Protein Residue Contacts and Prediction Methods. In Methods in Molecular Biology; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; Volume 1415, pp. 463–476. [Google Scholar]
NNcon | EVfold | plmDCA | PSICOV | CCMpred | DeepCov | PconsC4 | |
---|---|---|---|---|---|---|---|
Nncon | 1 | ||||||
EVfold | 0.076 | 1 | |||||
plmDCA | 0.064 | 0.353 | 1 | ||||
PSICOV | 0.068 | 0.488 | 0.351 | 1 | |||
CCMpred | 0.079 | 0.517 | 0.306 | 0.540 | 1 | ||
DeepCov | 0.210 | 0.215 | 0.176 | 0.243 | 0.285 | 1 | |
PconsC4 | 0.194 | 0.291 | 0.207 | 0.321 | 0.375 | 0.585 | 1 |
Methods | Top-5L | Top-3L | Top-2L | Top-L | Top-L/2 | Top-L/5 |
---|---|---|---|---|---|---|
NNcon | 15.66 | 18.27 | 21.24 | 27.44 | 34.34 | 43.18 |
PSICOV | 16.75 | 20.26 | 23.28 | 28.60 | 34.26 | 42.71 |
plmDCA | 17.11 | 24.39 | 30.16 | 40.98 | 50.72 | 59.26 |
EVfold | 17.58 | 24.04 | 29.89 | 41.80 | 54.62 | 67.57 |
CCMpred | 22.21 | 29.34 | 36.76 | 51.43 | 63.98 | 74.00 |
DeepCov | 29.89 | 41.27 | 51.92 | 70.21 | 83.28 | 91.61 |
PconsC4 | 34.79 | 47.35 | 59.85 | 78.29 | 89.41 | 95.76 |
COMTOP | 59.68 | 70.79 | 78.86 | 89.04 | 94.51 | 97.35 |
Methods | Top-5L | Top-3L | Top-2L | Top-L | Top-L/2 | Top-L/5 |
---|---|---|---|---|---|---|
PSICOV | 14.50 | 14.90 | 17.90 | 21.80 | 26.50 | 32.90 |
NNcon | 10.50 | 13.90 | 17.40 | 23.50 | 29.10 | 36.70 |
plmDCA | 12.10 | 15.40 | 18.70 | 25.00 | 32.00 | 40.10 |
EVfold | 12.20 | 15.80 | 19.30 | 25.60 | 32.10 | 39.00 |
CCMpred | 13.30 | 17.20 | 21.70 | 29.30 | 36.10 | 42.30 |
PconsC4 | 21.50 | 30.10 | 37.80 | 49.70 | 58.90 | 63.90 |
DeepCov | 21.40 | 29.80 | 38.10 | 52.60 | 64.40 | 75.10 |
COMTOP | 48.50 | 53.20 | 60.10 | 66.70 | 73.90 | 75.91 |
Domain | Length of Domain | Classification of Domain | Accuracy of Top-L/2 (%) | Accuracy of Top-L/5 (%) |
---|---|---|---|---|
T0950-D1 | 342 | FM | 63.2 | 75 |
T0953s1-D1 | 67 | FM | 92.9 | 100 |
T0953s2-D2 | 127 | FM | 68.8 | 33.3 |
T0953s2-D3 | 77 | FM | 28.6 | 0 |
T0957s1-D1 | 108 | FM | 61.1 | 50 |
T0957s2-D1 | 155 | FM | 70 | 70 |
T0960-D2 | 84 | FM | 63.7 | 60 |
T0963-D2 | 82 | FM | 80 | 100 |
T0968s1-D1 | 118 | FM | 96.8 | 100 |
T0968s2-D1 | 115 | FM | 100 | 100 |
T0951-D1 | 266 | TBM-easy | 97.8 | 100 |
T0960-D5 | 105 | TBM-easy | 100 | 100 |
T0963-D5 | 94 | TBM-easy | 100 | 100 |
T1003-D1 | 434 | TBM-easy | 88 | 89.1 |
T1016-D1 | 202 | TBM-easy | 97 | 100 |
T0954-D1 | 336 | TBM-hard | 100 | 100 |
T0957s1-D2 | 54 | TBM-hard | 33.3 | 50 |
T0960-D3 | 89 | TBM-hard | 100 | 100 |
T0963-D3 | 93 | TBM-hard | 100 | 100 |
T0966-D1 | 492 | TBM-hard | 84.6 | 91.9 |
T1009-D1 | 718 | TBM-hard | 92.7 | 100 |
T1011-D1 | 280 | TBM-hard | 95.8 | 100 |
T0953s2-D1 | 44 | FM/TBM | 75 | 100 |
T0958-D1 | 77 | FM/TBM | 84.6 | 100 |
T1005-D1 | 326 | FM/TBM | 89.7 | 91.3 |
T0960-D1 | 32 | not evaluated | 0 | 0 |
T0960-D4 | 64 | not evaluated | 38.5 | 33.3 |
T0963-D1 | 31 | not evaluated | 0 | 0 |
T0963-D4 | 64 | not evaluated | 30 | 33.3 |
T1011-D2 | 160 | not evaluated | 84.4 | 100 |
Methods | Top-L/2 | Top-L/5 |
---|---|---|
RapterX | 85.92 | 93.37 |
COMTOP | 84.02 | 88.87 |
Yang_server | 77.16 | 92.24 |
TripletRes | 76.98 | 88.61 |
ResTriplet | 75.47 | 87.63 |
DNCON3 | 52.24 | 64.87 |
Methods | Top-5L | Top-3L | Top-2L | Top-L | Top-L/2 | Top-L/5 |
---|---|---|---|---|---|---|
PSICOV | 08.58 | 09.23 | 09.61 | 11.76 | 12.88 | 14.46 |
plmDCA | 08.06 | 08.35 | 09.00 | 11.78 | 14.38 | 19.95 |
EVfold | 09.90 | 10.90 | 11.48 | 10.86 | 13.49 | 17.36 |
CCMpred | 09.02 | 10.29 | 11.89 | 14.97 | 18.92 | 24.34 |
NNcon | 17.61 | 18.88 | 19.73 | 27.54 | 34.47 | 43.99 |
PconsC4 | 22.32 | 24.76 | 30.87 | 41.50 | 65.62 | 69.46 |
DeepCov | 22.00 | 32.19 | 38.24 | 48.64 | 67.65 | 71.86 |
COMTOP | 41.27 | 46.92 | 53.10 | 61.18 | 68.33 | 77.49 |
Methods | Top-L/2 | Top-L/5 |
---|---|---|
TripletRes | 76.07 | 83.45 |
DeepPotential | 73.31 | 81.23 |
COMTOP | 68.33 | 77.49 |
tFold | 67.56 | 77.11 |
MULTICOM-AI | 66.67 | 74.93 |
RaptorX | 62.34 | 70.12 |
trfold | 56.74 | 66.04 |
Kiharalab_Contact | 53.11 | 59.87 |
Methods | top-2L | top-L | top-L/2 | top-L/5 |
---|---|---|---|---|
PSICOV | 24.75 | 25.21 | 26.83 | 29.17 |
NNcon | 23.69 | 24.61 | 26.41 | 29.22 |
EVfold | 27.82 | 29.89 | 32.94 | 37.62 |
PlmDCA | 27.98 | 30.95 | 35.59 | 42.83 |
CCMpred | 30.65 | 34.83 | 40.88 | 47.74 |
DeepCov | 35.45 | 42.34 | 53.24 | 63.03 |
PconsC4 | 37.32 | 45.44 | 55.16 | 65.26 |
COMTOP | 41.56 | 53.38 | 64.34 | 73.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reza, M.S.; Zhang, H.; Hossain, M.T.; Jin, L.; Feng, S.; Wei, Y. COMTOP: Protein Residue–Residue Contact Prediction through Mixed Integer Linear Optimization. Membranes 2021, 11, 503. https://doi.org/10.3390/membranes11070503
Reza MS, Zhang H, Hossain MT, Jin L, Feng S, Wei Y. COMTOP: Protein Residue–Residue Contact Prediction through Mixed Integer Linear Optimization. Membranes. 2021; 11(7):503. https://doi.org/10.3390/membranes11070503
Chicago/Turabian StyleReza, Md. Selim, Huiling Zhang, Md. Tofazzal Hossain, Langxi Jin, Shengzhong Feng, and Yanjie Wei. 2021. "COMTOP: Protein Residue–Residue Contact Prediction through Mixed Integer Linear Optimization" Membranes 11, no. 7: 503. https://doi.org/10.3390/membranes11070503
APA StyleReza, M. S., Zhang, H., Hossain, M. T., Jin, L., Feng, S., & Wei, Y. (2021). COMTOP: Protein Residue–Residue Contact Prediction through Mixed Integer Linear Optimization. Membranes, 11(7), 503. https://doi.org/10.3390/membranes11070503