Selective Membrane Sensor for Aluminum Determination in Food Products, Real Samples and Standard Alloys
Abstract
:1. Introduction
2. Chemicals and Methods
2.1. Product Samples, Chemicals and Reagents
2.2. Preparation of Stock Solutions
2.3. Sampling for Aluminum Ions Determination
2.4. Membrane Electrode Fabrication
2.5. Working Constituent of Liquid-Electrode Coat
2.6. Preparation of the Potential Layer
2.7. EMF Measurements
3. Results
3.1. The Calibration Curve of the Suggested Electrode
3.2. Selectivity Behavior
3.3. Response Time of the Suggested Aluminum Electrode
3.4. pH Influence on the Proposed Electrode Potential
3.5. Duration time of the Aluminum Sensor
3.6. Determination of Aluminum in Foodstuff, Real Samples, and Standard Alloys
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.J.; Yuan, R.; Chai, Y.Q.; Liu, X.L. Medical Treatment Toxicity associated with exposure to aluminum. Mater. Sci. Eng. 2010, 30, 209–214. [Google Scholar] [CrossRef]
- Arvand, M.; Asadollahzadeh, S.A. Ion-selective electrode for aluminum determination in pharmaceutical substances, tea leaves and water samples. Talanta 2008, 75, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Good, P.F.; Olanow, C.W.; Perl, D.P. Check Blood levels of aluminum in patients with kidney failure. Brain Res. 1992, 593, 343–349. [Google Scholar] [CrossRef]
- Parkinson, I.S.; Ward, M.K. Toxicity of Aluminum in humans. J. Clin. Pathol. 1981, 34, 1285–1291. [Google Scholar] [CrossRef] [Green Version]
- King, S.W.; Savory, J.; Willis, M.R. Effect of aluminum deficiency in biological life. Crit. Rev. Clin. Lab. Sci. 1981, 13, 1–5. [Google Scholar]
- Abel-Ghany, M.; Ei-Sebae, A.K.; Shalloway, D. Aluminum as a valuable factor in pathological diseases. J. Biol. Chem. 1976, 268, 976–982. [Google Scholar]
- Yari, A.; Darvishi, L.; Shamsipur, M. Al(III)-selective electrode based on newly synthesized xanthone derivative as neutral ionophore. Anal. Chim. Acta 2006, 555, 329–335. [Google Scholar] [CrossRef]
- Kalayci, S.; Somer, G.; Ekmekci, G. Preparation and application of a new glucose sensor based on iodide ion selective electrode. Talanta 2005, 65, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Karimian, F.; Rounaghi, G.H.; Arbab-Zavar, M.H. Connstruction of a PVC based 15-crown-5 electrochemical sensor for Ag(I) cation. Chin. Chem. Lett. 2014, 25, 809–814. [Google Scholar] [CrossRef]
- Mitrovic, B.; Milacic, R. Determination of aluminum in biological samples by graphite furnace atomic absorption technique. Sci. Total Environ. 2002, 258, 183–190. [Google Scholar]
- Narin, I.; Tuzen, M.; Soylak, M. Aluminium determination in environmental samples by graphite furnace atomic absorption spectrometry after solid phase extraction on Amberlite XAD-1180/pyrocatechol violet chelating resin. Talanta 2004, 63, 411–418. [Google Scholar] [CrossRef]
- Nguyen, K.L.; Lewis, D.M.; Jolly, M. Determination of soluble aluminium concentration in alkaline humic water using atomic absorption spectrophotometry. J. Water Res. 2004, 38, 4039–4045. [Google Scholar] [CrossRef]
- De Amorim, F.R.; Bof, C.; Franco, M.B.; da Silva, J.B.B.; Nascentes, C.C. Atomic Absorption Spectrometric Determination of aluminum in different samples. Microchem. J. 2006, 82, 168–175. [Google Scholar] [CrossRef]
- Sun, M. Determination of trace-aluminum in human serum album by graphite furnace atomic absorption spectrometry. Chin. J. Pharm. Anal. 2007, 27, 113–116. [Google Scholar]
- Wu, J.W. Atomic Absorption Spectrometric determination of aluminum in real samples. J. Shanxi Med. Univ. 2005, 36, 518–525. [Google Scholar]
- Sun, M.; Wu, Q. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry. J. Hazard. Mater. 2010, 176, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Bao, L.; Guo, R.; Wu, J. Determination of aluminum(III) in water samples in a micro-emulsion system by spectrofluorimetry. Anal. Chim. Acta 2004, 523, 43–48. [Google Scholar] [CrossRef]
- Yamada, E.; Hiwada, T.; Inaba, T.; Tokukura, M.; Fuse, Y. Speciation of aluminum in soil extracts using cation and anion exchangers followed by a flow-injection system with fluorescence detection. Anal. Sci. 2002, 18, 785–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, T.; Inoue, S.; Yamamoto, M.; Tsuji, M.; Miwa, T. Fluorimetric determination of magnesium and aluminum via complexation with oxine in HPLC. J. Chromatogr. A 2001, 910, 373–376. [Google Scholar] [CrossRef]
- Chen, J.-L.; Liu, C.-Y. Chelating resin sorption followed by supercritical fluid extraction and liquid chromatographic determination of aluminum in liquid samples. Anal. Chim. Acta 2003, 494, 125–132. [Google Scholar] [CrossRef]
- Lian, H.; Kang, Y.; Yasin, A.; Bi, S.; Shao, D.; Chen, Y.; Dai, L.; Tian, L. Determination of Aluminum in enviormental and biological samples by reversed-phase HPLC. J. Chromatogr. A 2003, 993, 179–185. [Google Scholar] [CrossRef]
- Lian, H.; Kang, Y.; Bi, S.; Arkin, Y.; Shao, D.; Li, D.; Chen, Y.; Dai, L.; Gan, N.; Tian, L. Direct determination of trace aluminum with quercetin by reversed-phase high performance liquid chromatography. Talanta 2004, 62, 43–50. [Google Scholar] [CrossRef]
- Soylak, M.; Sahin, U.; Ülgen, A.; Elci, L.; Dogan, M. Determination of Aluminum at trace level in water samples by visible absorption spectroscopy with a laser Diode. Anal. Sci. 1997, 13, 287–289. [Google Scholar] [CrossRef] [Green Version]
- Froes, R.E.S.; Borges Neto, W.; Naveira, R.L.P.; Silva, N.C.; Nascentes, C.C.; Silva, J.B.B. Exploratory analysis and inductively coupled plasma optical emission spectrometry applies in the determination of metals in soft drinks. Microchem. J. 2009, 92, 68–72. [Google Scholar] [CrossRef]
- Ricknagel, S.; Rosixk, U.; Bratter, P. Determination of rare earth elements in mineral waters by ICP-AES. J. Anal. Atom. Spectrom. 1994, 9, 1293–1300. [Google Scholar]
- Bantan, T.; Milacic, R.; Pihlar, B. Possibilities for speciation of Al–citrate and other negatively charged Al complexes by anion-exchange FPLC–ICP-AES. Talanta 1998, 46, 227–235. [Google Scholar] [CrossRef]
- Harigaya, K.; Kuwahara, Y.; Nishi, H. Determination of aluminum in large volume parenteral drug products by ICP-MP with a dynamic reaction cell. Chem. Pharm. Bull. 2008, 56, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Bocca, B.; Alimonti, A.; Petruccia, F.; Violante, N.; Sancesario, G.; Forte, G.; Senofonte, O. Quantification of the trace elements by sector field ICP-Ms in urine, serum, blood and cerebrospinal fluid. Spectrochim. Acta B 2004, 59, 559–566. [Google Scholar] [CrossRef]
- Chu, Q.; Li, X.H.; Ding, Y.; Zhang, L.; Fang, J.D. Determination of some metal catios using ICP-MP technique. Res. Environ. Eng. 2007, 21, 68–74. [Google Scholar]
- Xia, L.; Hu, B.; Jiang, Z.; Wu, Y.L.; Li, L.; Chen, R. 8-Hydroxyquinoline-chloroform single drop micro-extraction and electrothermal vaporization ICP-Ms for the determination of aluminum in natural waters and drinks. J. Anal. Atom. Spectrom. 2005, 20, 441–446. [Google Scholar] [CrossRef]
- Hassan, N.I.; Ahmad, M. Spectrophotometric determination of aluminum based on ion-associate complex with new reagent. Sins Malays. 2007, 36, 189–194. [Google Scholar]
- Kamino, S.; Yamaguchi, T.; Mori, T.; Miyamoto, M.; Kusumi, Y.; Fujita, Y. Spectrophotometric determination of aluminum with m-carboxyphenyl fluorene, a novel chemical probe, and its application. Anal. Sci. 2005, 21, 1549–1552. [Google Scholar] [CrossRef] [Green Version]
- Bahrama, M.; Madrakianb, T.; Bozorgzadehb, T.; Afkhamib, A. Micelle-mediated extraction for simultaneous spectrophotometric determination of aluminum and beryllium using mean centering of ratio spectra. Talanta 2007, 72, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Shokrollahi, M.; Ghaedi; Niband, M.S.; Rajabi, H.R. Selective and sensitive spectrophotometric method for determination of sub-micro-molar amounts of aluminum ion. J. Hazard. Mater. 2008, 151, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Niazi, A.; Zolgharnein, J.; Davoodabadi, M.R. New analytical spectrophotometric method for the determination of aluminum. Ann. Chim. 2007, 97, 1181–1188. [Google Scholar] [CrossRef]
- Zheng, H.L.; Xiong, M.G.; Gong, Y.K.; Peng, D.J. Spectrophotometric determination of aluminum (III) in real samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 66, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, N.K.; Singh, H.B.; Sharma, R.L.; Singh, V.K. Simultaneous determination of beryllium and aluminum in mixtures using derivative spectrophotometry. Talanta 1993, 40, 415–423. [Google Scholar] [CrossRef]
- Azhari, S.J.; Amin, S.A. High sensitive and Selective spectrophotometric determination of aluminum. Anal. Lett. 2007, 40, 2959–2964. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hoque, M.R.; Shahed, A.S.M.; Khan, H.; Bhattacharjee, S.C. New Spectrophotometric method for the determination of aluminum ions. Eurasian J. Anal. Chem. 2010, 5, 1–7. [Google Scholar]
- Huseyinli, A.A.; Alieva, R.; Haciyevaa, S.; Guray, T. Spectrophotometric determination of aluminium and indium with 2,2′,3,4-tetrahydroxy-3′,5′-disulphoazobenzene. J. Hazard. Mater. 2009, 163, 1001–1007. [Google Scholar] [CrossRef]
- Buratti, M.; Valla, C.; Pellegrino, O.; Rubino, F.M.; Colombi, A. Determination of aluminium ions in pharmaceutical formulations. Anal. Biochem. 2006, 353, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, A.; Esmaeilbeig, A.R.; Jarrahpour, A.A.; Khajeh, B.; Kia, R. Aluminium(III) selective electrode based on a newly synthesized tetradentate Schiff base. Talanta 2002, 58, 397–403. [Google Scholar] [CrossRef]
- Saleh, M.B.; Hassan, S.M.; Abdel Gaber, A.A.; Kream, N.A. Novel potentiometric membrane sensor for selective determination of aluminum(III) ions. Anal. Chim. Acta 2001, 434, 247–253. [Google Scholar] [CrossRef]
- Babenikov, V.; Bykova, L.; Evsevleeva, L. Aluminum selective electrode. J. Anal Chem. 2005, 60, 866–867. [Google Scholar]
- Mousavi, M.F.; Arvand, M.; Zanjanchi, M.A. Ion-selective membrane sensor for the determination of aluminum. Electroanalysis 2001, 13, 1125–1133. [Google Scholar] [CrossRef]
- Gupta, V.K.; Jain, A.K.; Maheshwari, G. Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix. Talanta 2007, 72, 1469–1573. [Google Scholar] [CrossRef]
- Arvand, M.; Kermanian, M. Potentiometric determination of aluminum in Foods, Pharmaceuticals, and Alloys by modefied carbon paste electrode. Food Anal. Method 2013, 6, 578–586. [Google Scholar] [CrossRef]
- Masoomeh, E.; Gholam, H.; Rounaghi, M.H. Construction of a new selective aluminum (III) cation selective electrode. J. Braz. Chem. Soc. 2015, 26, 963–969. [Google Scholar]
- El-Badry, M. Modified carbon paste electrode for potentiometric determination of aluminum ion in spiked real water sample. Russ. J. Electrochem. 2016, 52, 754–761. [Google Scholar]
- Saber, A.L.; Abd El Shafey, I.A. Novel ionophore for aluminum ion sensors: Synthesis and analytical characterization. LEEE Sens. J. 2016, 16, 5867–5874. [Google Scholar] [CrossRef]
- Atty, S.A.; Sedik, G.A.; Morsy, F.A.; Naguib, D.M.; Zaazaa, H.E. A novel sensor aluminum silicate modified carbon paste electrode for determination of anti-depressant dothiepin HCl in pharmaceutical formulation and biological fluids. Microchem. J. 2019, 148, 725–734. [Google Scholar] [CrossRef]
- Youssef, A.F.; Abd Dayiem, M.; Shehab, O.R. Use of dicloxacillin Al(III) Complex as a modifier for determination of Al(III) ion in real samples. Electroanalysis 2020, 32, 2902–2912. [Google Scholar] [CrossRef]
- Yuana, W.; Wana, M.; Wua, X. Prediction of forming limit curves for 2021 aluminum alloys. Procedia Eng. 2017, 207, 544–549. [Google Scholar] [CrossRef]
- Sedwick, V.; Leal, A.; Turner, D.; Kanu, A.B. Quantitative determination of aluminum in deodorant brands. J. Chem. Educ. 2018, 95, 451–455. [Google Scholar] [CrossRef]
- Eckert, P.J.; Prashanth, K.; Wu, M.; Kaban, I.; Scudino, L.S. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting. Trans. Nonferrous Met. Soc. China 2020, 30, 2001–2009. [Google Scholar]
- Renedo, O.D.; Navarro-Cunado, A.M.; Romany, E.V.; Asuncion, M.; Lomillo, A. Determination of aluminum using different techniques based on the Al(III)-morin complex. Talanta 2018, 196, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Hafez, E.M.; El Sheikh, R.; Fathallah, M.; Saygal, A.A.; Gouda, A.A. An environment-friendly supramolecular solvent-based liquid–phase micro-extraction method for determination of aluminum in water and acid digested food samples prior to spectrophotometry. Microchem. J. 2019, 150, 104–110. [Google Scholar] [CrossRef]
- Braas, S.; Lostak, T.; Pappert, E.; Flook, J.; Schram, J. On-line electrolytic dissolution for soluble aluminum determination in high-silicon steel/electrical sheet by ED-FIA-ICP-OES. Talanta 2018, 189, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Abdul Haleem, P.; Tuzen, M.; Kazi, T.G. Deep eutectic solvent based advance micro-extraction method for determination of aluminum in water and food samples: Multivariate study. Talanta 2018, 178, 588–593. [Google Scholar]
- Gupta, V.K.; Singh, L.P. Encyclopedia of Sensors, 5; Grimes, C.A., Dickey, B., Eds.; American Scientific Publishers: Los Angeles, CA, USA, 2006; p. 133. [Google Scholar]
- Abe, I.; Horiba, T.; Abe, Y.; Hida, K.; Matsuyama, T.; Yasuno, S.; Komaba, S. Investigation and improvement of metallic aluminum as alloying electrode in non-aqueous Li Cell. J. Electrochem. Soc. 2020, 167, 513–518. [Google Scholar] [CrossRef]
- Sekularac, G.; Milosev, I. Electrochemical behavior and Self-Sealing ability of zirconium conversion coating applied on aluminum Alloy 3005 in 0.5 M NaCl Solution. J. Electrochem. Soc. 2020, 167, 150–159. [Google Scholar] [CrossRef]
- Renganathan, V.; Ramachandran, B.; Shen-Ming, C.H.; Sakthivel, K.; Muthumariappan, A. Bifunctional bimetallic heterojunction material based on Al2O3/ZnO micro flowers for electrochemical sensing and catalysis. Ecotoxicol. Environm. Saf. 2019, 176, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Basha, V.S.; Chowdary, P.G.; Renuka, M. Non-extractive spectrophotometric determination of cobalt (II) using 2- acetylthiophene isonico tinoylhydrazone in environmental and pharmaceutical samples. J. Pharma Drug Res. 2019, 2, 102–109. [Google Scholar]
- Sulaiman, S.T.; Hamoudi, T.A. Spectrophotometric determination of cobalt(II) with mordant blue 9-application to vitamin B12 (injections and powder). Raf. J. Sci. 2018, 27, 93–100. [Google Scholar]
- Khalil, S. Ion-selective electrode for gallium determination in nickel alloy, fly-ash and biological samples. Anal. Chim. Acta 2006, 562, 204–209. [Google Scholar]
- Khalil, S.; El Sharnouby, M. Construction of a highly selective membrane sensor for the determination of cobalt (II) ions. Chemosensors 2021, 9, 86. [Google Scholar] [CrossRef]
- Panggabean, A.S. Preparation and characterization ion selective electrode Cd(II) based on chitosan in PVC membrane. Indones. J. Chem. 2011, 11, 285–292. [Google Scholar] [CrossRef]
Specific Slope/mV | 58.00 |
Intercept/mV | −51.4 + 0.2 |
Limit of detection/mol dm−3 | 1.6 × 10−7 |
Measuring range/mol dm−3 | 2.5 × 10−7–1.5 × 10−1 |
Response time/s | 12 |
Lifetime/d | 150 |
pH range | 5.0–8.0 |
Separate Solution Method (SSM) | Matched Potential Method | ||
---|---|---|---|
K | Ei = Ej | ai = aj | MPM |
AlCl3 | 0.338 + 0.0320 | 0.366 + 0.010 | 0.366 + 0.0200 |
CdCl2 | 0.250 + 0.0060 | 0.333 + 0.020 | 0.295 + 0.0100 |
NiCl2 | 0.074 + 0.0030 | 0.162 + 0.004 | 0.278 + 0.0110 |
CoCl2 | 0.055 + 0.0120 | 0.077 + 0.001 | 0.006 + 0.0010 |
CaCl2 | 0.282 + 0.0070 | 0.363 + 0.050 | 0.312 + 0.0070 |
CuCl2 | 0.017 + 0.0002 | 0.078 + 0.003 | 0.014 + 0.0006 |
Sample | Calibration Curve Method | Standard Addition Method | ||||||
---|---|---|---|---|---|---|---|---|
Sample Information mg/Kg | Al3+ Found mg/Kg | Relative Error % | V % | Sample Information mg/Kg | Al3+ Found mg/Kg | Relative Error % | V % | |
Bread | 460 | 460.65 | 0.14 | 0.08 | 460 | 462.75 | 0.60 | 0.15 |
Flour | 150 | 151.45 | 0.97 | 0.05 | 150 | 152.86 | 1.91 | 0.12 |
Rice | 750 | 751.55 | 0.21 | 0.23 | 750 | 752.89 | 0.39 | 0.25 |
Tea-Leaves | 550 | 551.86 | 0.34 | 0.12 | 550 | 552.95 | 0.54 | 0.16 |
Tomato Sauce | 175 | 176.76 | 1.00 | 0.26 | 175 | 177.54 | 1.45 | 0.16 |
Chocolate | 400 | 401.85 | 0.46 | 0.35 | 400 | 402.75 | 0.69 | 0.28 |
Granite | 500 | 501.65 | 0.33 | 0.11 | 500 | 502.15 | 0.43 | 0.51 |
Basalt | 500 | 501.75 | 0.35 | 0.13 | 500 | 502.65 | 0,53 | 0.26 |
Rhyolite | 500 | 501.85 | 0.37 | 0.26 | 500 | 502.76 | 0.55 | 0.22 |
Copper-based alloy NBS164 | 250 | 251.95 | 0.78 | 0.37 | 250 | 252.75 | 1.10 | 0.23 |
Zinc-based alloy NIST94C | 300 | 301.85 | 0.62 | 0.27 | 300 | 302.75 | 0.92 | 0.26 |
Reference | Specific Slope (mV) | Linearity Concentration Range (M) | Duration Time | Detection Limit (M) | Working pH Range |
---|---|---|---|---|---|
This work Results | 58.0 | 2.5 × 10−7–4.5 × 10−1 | 5 months | 1.6 × 10−7 | 5.0–8.0 |
[2] | 19.6 ± 0.4 | 1.0 × 10−6–1.0 × 10−1 | >3 months | 6.3 × 10−7 | 3.0–6.0 |
[7] | 20 ± 0.2 | 1.6 × 10−6–1.0 × 10−1 | 3 months | 6.0 × 10−7 | 3.0–8.5 |
[42] | 19.3 ± 0.8 | 5.0 × 10−6–1.0 × 10−2 | >2 months | 2.5 × 10−6 | 3.5–5.0 |
[43] | 19.5 | 1.0 × 10−5–1.0 × 10−1 | 1 month | 3.2 × 10−6 | 2.25–3.25 |
[44] | 29.5 | 1.0 × 10−5–1.0 | 2 months | 1.0 × 10−6 | - |
[45] | 18.5 ± 0.7 | 1.0 × 10−6–1.0 × 10−2 | 2 months | 1.3 × 10−7 | 0.5–3.0 |
[46] | 19.7 ± 0.1 | 3.2 × 10−5–1.0 × 10−1 | 2 months | 3.2 × 10−7 | 3.5–5.0 |
[47] | 19.8 ± 0.4 | 1.0 × 10−6–1.0 × 10−1 | >4 months | 4.6 × 10−7 | 2.0–6.0 |
[48] | 19.0 ± 0.4 | 1.0 × 10−6–1.0 × 10−1 | 2 months | 5.5 × 10−7 | 4.0–8.0 |
[49] | 21.3 ± 0.18 | 7.0 × 10−6–1.0 × 10−2 | - | 6.0 × 10−6 | - |
[50] | 19.6 ± 0.3 | 1.0 × 10−7–1.0 × 10−2 | 11 weeks | 5.0 × 10−8 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, S.; Elnaggar, A.Y. Selective Membrane Sensor for Aluminum Determination in Food Products, Real Samples and Standard Alloys. Membranes 2021, 11, 504. https://doi.org/10.3390/membranes11070504
Khalil S, Elnaggar AY. Selective Membrane Sensor for Aluminum Determination in Food Products, Real Samples and Standard Alloys. Membranes. 2021; 11(7):504. https://doi.org/10.3390/membranes11070504
Chicago/Turabian StyleKhalil, Sabry, and Ashraf Y. Elnaggar. 2021. "Selective Membrane Sensor for Aluminum Determination in Food Products, Real Samples and Standard Alloys" Membranes 11, no. 7: 504. https://doi.org/10.3390/membranes11070504
APA StyleKhalil, S., & Elnaggar, A. Y. (2021). Selective Membrane Sensor for Aluminum Determination in Food Products, Real Samples and Standard Alloys. Membranes, 11(7), 504. https://doi.org/10.3390/membranes11070504