Membrane Reactor for Methanol Synthesis Using Si-Rich LTA Zeolite Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. MeOH Synthesis Membrane Reactor Using an Si-Rich LTA Membrane
2.2. Simulation Model of Membrane Reactor for MeOH Synthesis
- (1)
- CO2 + 3H2 ⇄ CH3OH + H2O ∆H = −49.4 kJ/mol
- (2)
- CO + 2H2 ⇄ CH3OH ∆H = −90.9 kJ/mol
- (3)
- CO2 + H2 ⇄ CO + H2O ∆H = 41.5 kJ/mol
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Struis, R.P.W.J.; Stucki, S.; Wiedorn, M. A membrane reactor for methanol synthesis. J. Membr. Sci. 1996, 113, 93–100. [Google Scholar] [CrossRef]
- Struis, R.P.W.J.; Stucki, S. Verification of the membrane reactor concept for the methanol synthesis. Appl. Catal. A 2001, 216, 117–129. [Google Scholar] [CrossRef]
- Allemand, M.; Martin, M.H.; Reyter, D.; Roué, L.; Guay, D.; Andrei, C.; Botton, G. Synthesis of Cu-Pd alloy thin film by co-electrodeposition. Electrochem. Acta. 2011, 56, 7397–7403. [Google Scholar] [CrossRef]
- Seshimo, M.; Ozawa, M.; Sone, M.; Sakurai, M.; Kameyama, H. Fabrication of a novel Pd/γ-alumina graded membrane by electroless plating on nanoporous γ-alumina. J. Membr. Sci. 2008, 324, 181–187. [Google Scholar] [CrossRef]
- Yoshimune, M.; Haraya, K. Flexible carbon hollow fiber membranes derived from sulfonate poly(phenylene oxide). Sep. Purif. Technol. 2010, 75, 193–197. [Google Scholar] [CrossRef]
- Itta, A.K.; Tseng, H.-H.; Wey, M.-Y. Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. J. Membr. Sci. 2011, 372, 387–395. [Google Scholar] [CrossRef]
- Da Costa, J.D.; Lu, G.; Rudolph, V.; Lin, Y. Novel molecular sieve silica (MSS) membranes: Characterisation and permeation of single-step and two-step sol–gel membranes. J. Membr. Sci. 2002, 198, 9–21. [Google Scholar] [CrossRef]
- Kanezashi, M.; Shioda, T.; Gunji, T.; Tsuru, T. Gas permeation properties of silica membranes with uniform pore size derived from polyhedral oligomeric silsesquioxane. AIChE J. 2012, 58, 1733–1743. [Google Scholar] [CrossRef]
- Seshimo, M.; Akamatsu, K.; Furuta, S.; Nakao, S.-I. Comparative study on the influence of toluene and methylcyclohexane on the performance of dimethoxydiphenylsilane-derived silica membranes prepared by chemical vapor deposition. Sep. Purif. Technol. 2015, 140, 1–5. [Google Scholar] [CrossRef]
- Coronas, J.; Noble, R.D.; Falconer, J.L. Separation of C4 and C6 isomers in ZSM-5 tubular membranes. Ind. Eng. Chem. Res. 1998, 37, 166–176. [Google Scholar] [CrossRef]
- Krishna, R.; Paschek, D. Permeation of hexane isomers across ZSM-5 zeolite membranes. Ind. Eng. Chem. Res. 2000, 39, 2618–2622. [Google Scholar] [CrossRef]
- Matsufuji, T. Separation of butane and xylene isomers with MFI-type zeolitic membrane synthesized by a vapor-phase transport method. J. Membr. Sci. 2000, 178, 25–34. [Google Scholar] [CrossRef]
- Xomeritakis, G.; Lai, Z.; Tsapatsis, M. Separation of xylene isomer vapors with oriented MFI membranes made by seeded growth. Ind. Eng. Chem. Res. 2001, 40, 544–552. [Google Scholar] [CrossRef]
- Okamoto, K.-I.; Kita, H.; Horii, A.K.; Kondo, K.T. Zeolite NaA Membrane: Preparation, Single-Gas Permeation, and Pervaporation and Vapor Permeation of Water/Organic Liquid Mixtures. Ind. Eng. Chem. Res. 2001, 40, 163–175. [Google Scholar] [CrossRef]
- Kondo, M.; Yamamura, T.; Yukitake, T.; Matsuo, Y.; Kita, H.; Okamoto, K.-I. IPA purification for lens cleaning by vapor permeation using zeolite membrane. Sep. Purif. Technol. 2003, 32, 191–198. [Google Scholar] [CrossRef]
- Cho, C.H.; Oh, K.Y.; Yeo, J.G.; Kim, S.K.; Lee, Y.M. Synthesis, ethanol dehydration and thermal stability of NaA zeolite/alumina composite membranes with narrow non-zeolitic pores and thin intermediate layer. J. Membr. Sci. 2010, 364, 138–148. [Google Scholar] [CrossRef]
- Zhou, R.; Hu, Z.; Hu, N.; Duan, L.; Chen, X.; Kita, H. Preparation and microstructural analysis of high-performance mordenite membranes in fluoride media. Microporous Mesoporous Mater. 2012, 156, 166–170. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Hu, N.; Zhang, F.; Wu, T.; Chen, X.; Kita, H. Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures. J. Membr. Sci. 2018, 564, 174–183. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Hotta, H.; Sato, K.; Nagase, T.; Mizukami, F. Preparation of novel chabazite (CHA)-type zeolite layer on porous α-Al2O3 tube using template-free solution. J. Membr. Sci. 2010, 347, 193–196. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Zhang, Y.; Liu, D.; Gu, X. Fabrication of pure-phase CHA zeolite membranes with ball-milled seeds at low K+ concentration. Microporous Mesoporous Mater. 2015, 215, 98–108. [Google Scholar] [CrossRef]
- Itho, N.; Ishida, J.; Sato, T.; Hasegawa, Y. Vapor phase esterification using a CHA type of zeolite membrane. Catal. Today 2016, 268, 79–84. [Google Scholar] [CrossRef]
- Sawamura, K.-I.; Izumi, T.; Kawasaki, K.; Daikohara, S.; Sekine, Y.; Kikuchi, E.; Matsukata, M.; Ohsuna, T.; Takada, M. Cover Picture: Reverse-Selective Microporous Membrane for Gas Separation (Chem. Asian J. 7/2009). Chem. Asian J. 2009, 4, 1015. [Google Scholar] [CrossRef]
- Sawamura, K.; Shirai, T.; Takada, M.; Sekine, Y.; Kikuchi, E.; Matsukata, M. Selective permeation and separation of steam from water-methanol-hydrogen gas mixtures through mordenite membrane. Catal. Today 2008, 132, 182–187. [Google Scholar] [CrossRef]
- Raso, R.; Tovar, M.; Lasobras, J.; Herguido, J.; Kumakiri, I.; Araki, S.; Menendez, M. Zeolite membranes: Comparison in the separation of H2O/H2/CO2 mixtures and test of a reactor for CO2 hydrogenation to methanol. Catal. Today 2021, 364, 270–275. [Google Scholar] [CrossRef]
- Liu, B.; Kita, H.; Yogo, K. Preparation of Si-rich LTA zeolite membrane using organic template-free solution for methanol dehydration. Sep. Purif. Technol. 2020, 239, 116533. [Google Scholar] [CrossRef]
- Conato, M.T.; Oleksiak, M.D.; McGrail, B.P.; Motkuri, R.K.; Rimer, J.D. Framework stabilization of Si-rich LTA zeolite prepared in organic-free media. Chem. Commun. 2015, 51, 269. [Google Scholar] [CrossRef]
- Graaf, G.H.; Sijtsema, P.J.J.M.; Stamhuis, E.J.; Joosten, G.E.H. Chemical equilibria in methanol synthesis. Chem. Eng. Sci. 1986, 41, 2883–2890. [Google Scholar] [CrossRef]
- Graaf, G.H.; Stamhuis, E.J.; Beenackers, A.A.C.M. Kinetics of low-pressure methanol synthesis. Chem. Eng. Sci. 1988, 43, 3185–3195. [Google Scholar] [CrossRef]
- Graaf, G.H.; Scholtens, H.; Stamhuis, E.J.; Beenackers, A.A.C.M. Intra-particle diffusion limitations in low-pressure methanol synthesis. Chem. Eng. Sci. 1990, 45, 773–783. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seshimo, M.; Liu, B.; Lee, H.R.; Yogo, K.; Yamaguchi, Y.; Shigaki, N.; Mogi, Y.; Kita, H.; Nakao, S.-i. Membrane Reactor for Methanol Synthesis Using Si-Rich LTA Zeolite Membrane. Membranes 2021, 11, 505. https://doi.org/10.3390/membranes11070505
Seshimo M, Liu B, Lee HR, Yogo K, Yamaguchi Y, Shigaki N, Mogi Y, Kita H, Nakao S-i. Membrane Reactor for Methanol Synthesis Using Si-Rich LTA Zeolite Membrane. Membranes. 2021; 11(7):505. https://doi.org/10.3390/membranes11070505
Chicago/Turabian StyleSeshimo, Masahiro, Bo Liu, Hey Ryeon Lee, Katsunori Yogo, Yuichiro Yamaguchi, Nobuyuki Shigaki, Yasuhiro Mogi, Hidetoshi Kita, and Shin-ichi Nakao. 2021. "Membrane Reactor for Methanol Synthesis Using Si-Rich LTA Zeolite Membrane" Membranes 11, no. 7: 505. https://doi.org/10.3390/membranes11070505
APA StyleSeshimo, M., Liu, B., Lee, H. R., Yogo, K., Yamaguchi, Y., Shigaki, N., Mogi, Y., Kita, H., & Nakao, S. -i. (2021). Membrane Reactor for Methanol Synthesis Using Si-Rich LTA Zeolite Membrane. Membranes, 11(7), 505. https://doi.org/10.3390/membranes11070505