Protein Crystallization in a Microfluidic Contactor with Nafion®117 Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystallization Solutions
2.2. Design and Fabrication of the Microdevice
2.3. Crystallization Experiments
2.4. Modeling of Water and Hg2+ Transport through 117 Nafion® Membrane
2.5. X-ray Diffraction Analysis and Structure Determination
3. Results and Discussion
3.1. Estimation of Water and Hg2+ Transport across Nafion® Membrane
3.2. Simulation of Transport in the Microdevice
3.3. Crystallization of HEWL in the Microfluidic Device
3.4. X-ray Diffraction and Structure Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gavira, J.A. Current trends in protein crystallization. Arch. Biochem. Biophys. 2016, 602, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ismagilov, R.F. Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip. Annu. Rev. Biophys. 2010, 39, 139–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, B.G.; Roy-Chowdhury, S.; Fromme, R.; Fromme, P.; Ros, A. Protein Crystallization in an Actuated Microfluidic Nanowell Device. Cryst. Growth Des. 2016, 16, 2074–2082. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Li, L.; Nichols, K.P.; Ismagilov, R.F. SlipChip. Lab Chip. 2009, 9, 2286. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, K.; Hu, X.; Li, G.; Jin, Q.; Zhao, J. A centrifugal microfluidic device for screening protein crystallization conditions by vapor diffusion. Sens. Actuators B Chem. 2015, 219, 105–111. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Oberthür, D.; Meyer, A.; Perbandt, M.; Duan, L.; Kang, Q. Design and application of a microfluidic device for protein crystallization using an evaporation-based crystallization technique. J. Appl. Crystallogr. 2012, 45, 53–60. [Google Scholar] [CrossRef] [Green Version]
- De Wijn, R.; Hennig, O.; Roche, J.; Engilberge, S.; Rollet, K.; Fernandez-Millan, P.; Brillet, K.; Betat, H.; Mörl, M.; Roussel, A.; et al. A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCrJ 2019, 6, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Curcio, E.; Criscuoli, A.; Drioli, E. Membrane crystallizers. Ind. Eng. Chem. Res. 2001, 40, 2679–2684. [Google Scholar] [CrossRef]
- Di Profio, G.; Curcio, E.; Cassetta, A.; Lamba, D.; Drioli, E. Membrane crystallization of lysozyme: Kinetic aspects. J. Cryst. Growth. 2003, 257, 359–369. [Google Scholar] [CrossRef]
- Di Profio, G.; Curcio, E.; Drioli, E. Trypsin crystallization by membrane-based techniques. J. Struct. Biol. 2005, 150, 41–49. [Google Scholar] [CrossRef]
- Simone, S.; Curcio, E.; Di Profio, G.; Ferraroni, M.; Drioli, E. Polymeric hydrophobic membranes as a tool to control polymorphism and protein ligand interactions. J. Membr. Sci. 2006, 283, 123–132. [Google Scholar] [CrossRef]
- Di Profio, G.; Polino, M.; Nicoletta, F.P.; Belviso, B.D.; Caliandro, R.; Fontananova, E.; De Filpo, G.; Curcio, E.; Drioli, E. Tailored hydrogel membranes for efficient protein crystallization. Adv. Funct. Mater. 2014, 24, 1582–1590. [Google Scholar] [CrossRef]
- Pike, A.C.W.; Garman, E.F.; Krojer, T.; Delft, F.; von Carpenter, E.P. An overview of heavy-atom derivatization of protein crystals. Acta Crystallogr. Sect. D Struct. Biol. 2016, 72, 303–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, G.L. Introduction to phasing. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 325–338. [Google Scholar] [CrossRef]
- Dauter, M.; Dauter, Z. Phase determination using halide ions. Methods Mol. Biol. 2007, 364, 149–158. [Google Scholar] [PubMed]
- Morth, J.P.; Sørensen, T.L.M.; Nissen, P. Membrane’s eleven: Heavy-atom derivatives of membrane-protein crystals. Acta Crystallogr. Sect. D Biol. Crystallogr. 2006, 62, 877–882. [Google Scholar] [CrossRef]
- Giacovazzo, C.; Ladisa, M.; Siliqi, D. The approach of the joint probability distribution functions: The SIR-MIR, SAD-MAD and SIRAS-MIRAS, cases, Zeitschrift Für Krist. Cryst. Mater. 2002, 217, 703–709. [Google Scholar]
- Joyce, M.G.; Radaev, S.; Sun, P.D. A rational approach to heavy-atom derivative screening. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Agniswamy, J.; Joyce, M.G.; Hammer, C.H.; Sun, P.D. Towards a rational approach for heavy-atom derivative screening in protein crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2008, 64, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Polino, M.; Carvalho, A.L.; Juknaite, L.; Portugal, C.A.M.; Coelhoso, I.M.; Romão, M.J.; Crespo, J.G. Ion-Exchange Membranes for Stable Derivatization of Protein Crystals. Cryst. Growth Des. 2017, 17, 4563–4572. [Google Scholar] [CrossRef]
- Xu, T. Ion exchange membranes: State of their development and perspective. J. Memb. Sci. 2005, 263, 1–29. [Google Scholar] [CrossRef]
- Galinha, C.F.; Carvalho, G.; Portugal, C.A.M.; Guglielmi, G.; Reis, M.A.M.; Crespo, J.G. Multivariate statistically-based modelling of a membrane bioreactor for wastewater treatment using 2D fluorescence monitoring data. Water Res. 2012, 46, 3623–3636. [Google Scholar] [CrossRef]
- Qin, D.; Xia, Y.; Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Feng, F.; Zhang, K.; Ye, S.; Kwok, D.Y.; Birss, V. Wettability of Nafion and Nafion/Vulcan Carbon Composite Films. Langmuir 2012, 28, 6698–6705. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Whitesides, G.M. Soft-lithography. Angew. Chem. Int. Ed. 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Pimpin, A.; Srituravanich, W. Review on Micro- and Nanolithography Techniques and their Applications. Eng. J. 2012, 16, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Phan, D.-T.; Yang, C.; Nguyen, N.-T. A sugar-template manufacturing method for microsystem ion-exchange membranes. J. Micromech. Microeng. 2017, 27, 075011. [Google Scholar]
- Yuen, P.K.; Su, H.; Goral, V.N.; Fink, K.A. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices. Lab Chip. 2011, 11, 1541–1544. [Google Scholar] [CrossRef]
- Phan, D.-T.; Yang, C.; Nguyen, N.-T. Fabrication of nanoporous junctions using off-the- shelf Nafion membrane. J. Micromech. Microeng. 2015, 25, 115019. [Google Scholar] [CrossRef] [Green Version]
- Slouka, Z.; Senapati, S.; Chang, H.-C. Microfluidic Systems with Ion-Selective Membranes. Annu. Rev Anal. Chem. 2014, 7, 317–355. [Google Scholar] [CrossRef] [Green Version]
- Pham, M.H.; Barz, D.P.J. Bonding Nafion® with polydimethysiloxane: A versatile approach towards ion-exchange membrane microfluidic devices. J. Membr. Sci. 2017, 537, 310–314. [Google Scholar] [CrossRef]
- Jung, H.; Won, J. Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC). Int. J. Hydrogen Energy 2012, 37, 12580–12585. [Google Scholar] [CrossRef]
- Pessoa-Lopes, M.; Crespo, J.G.; Velizarov, S. Arsenate removal from sulphate-containing water streams by an ion-exchange membrane process. Sep. Purif. Technol. 2016, 166, 125–134. [Google Scholar] [CrossRef]
- Potterton, L.; Agirre, J.; Ballard, C.; Cowtan, K.; Dodson, E.; Evans, P.R.; Jenkins, H.T.; Keegan, R.; Krissinel, E.; Stevenson, K.; et al. CCP 4 i 2: The new graphical user interface to the CCP 4 program suite research papers. Acta Crystallogr. Sect. D Struct. Biol. 2018, 74, 68–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauptman, H. Phasing methods for protein crystallography. Curr. Opin. Struct. Biol. 1997, 7, 672–680. [Google Scholar] [CrossRef]
- Evans, P.; McCoy, A. An introduction to molecular replacement. Acta Crystallogr. Sect. D Biol. Crystallogr. 2007, 64, 1–10. [Google Scholar] [CrossRef]
- RCSB PBD: Protein Data Bank. Available online: https://www.rcsb.org/structure/3A8Z (accessed on 19 June 2021).
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics research papers. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, D60, 2126–2132. [Google Scholar] [CrossRef] [Green Version]
- Murshudov, G.N.; Skubák, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 355–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. Sect. D Biol. Crystallogr. 2006, 62, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- McNichola, S.; Potterton, E.; Wilson, K.S.; Noble, M.E.M. Presenting your structures: The CCP4mg molecular-graphics software. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Chen, V.B.; Arendall, W.B.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwai, W.; Yagi, D.; Ishikawa, T.; Ohnishi, Y.; Tanaka, I.; Niimura, N. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state. J. Synchrotron Rad. 2008, 15, 312–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wukovitz, S.W.; Yeates, T.O. Why protein crystals favour some space-groups over others. Nat. Struct. Biol. 1995, 2, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Bruger, A.T. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 1992, 355, 472–475. [Google Scholar] [CrossRef] [PubMed]
Substance | Mass Transfer Coefficient (m/s) |
---|---|
Water | |
Hg2+ |
X-ray Diffraction Parameters and Statistics | |
space group | P 43 21 2 |
wavelength (Å) | 1.5418 |
resolution range (Å) | 22.20–1.70 (1.80–1.70) |
unit cell parameters (Å) a, b, c | 78.6, 78.6, 36.9 |
total reflections | 147469 (9518) |
unique reflections | 13166 (1981) |
multiplicity | 11.2 (4.8) |
completeness (%) | 98.7 (94.3) |
mean I/sigma (I) | 18.8 (2.1) |
R-merge † | 0.100 (0.662) |
R-sigma + | 0.055 (0.485) |
Model Building and Refinement | |
R-work ‡/R-free * | 0.177/0.216 |
N of nonhydrogen atoms | 1226 |
N of macromolecule atoms | 1058 |
N of protein residues | 129 |
N of Sodium atoms | 1 |
N of Chloride atoms | 7 |
N of water molecules | 136 |
RMSD (bonds) (Å) | 0.009 |
RMSD (angles) (°) | 1.589 |
Ramachandran favored (%) | 93.97 |
Ramachandran allowed (%) | 6.03 |
Ramachandran outliers (%) | 0.00 |
Average B-factor (Å2) main chain | 13.5 |
Average B-factor (Å2) side chain | 16.2 |
Average B-factor (Å2) for Na+ | 23.3 |
Average B-factor (Å2) for Cl− | 27.5 |
Average B-factor (Å2) for waters | 24.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polino, M.; Rho, H.S.; Pina, M.P.; Mallada, R.; Carvalho, A.L.; Romão, M.J.; Coelhoso, I.; Gardeniers, J.G.E.; Crespo, J.G.; Portugal, C.A.M. Protein Crystallization in a Microfluidic Contactor with Nafion®117 Membranes. Membranes 2021, 11, 549. https://doi.org/10.3390/membranes11080549
Polino M, Rho HS, Pina MP, Mallada R, Carvalho AL, Romão MJ, Coelhoso I, Gardeniers JGE, Crespo JG, Portugal CAM. Protein Crystallization in a Microfluidic Contactor with Nafion®117 Membranes. Membranes. 2021; 11(8):549. https://doi.org/10.3390/membranes11080549
Chicago/Turabian StylePolino, M., H. S. Rho, M. P. Pina, R. Mallada, A. L. Carvalho, M. J. Romão, Isabel Coelhoso, J. G. E. Gardeniers, J. G. Crespo, and Carla A. M. Portugal. 2021. "Protein Crystallization in a Microfluidic Contactor with Nafion®117 Membranes" Membranes 11, no. 8: 549. https://doi.org/10.3390/membranes11080549
APA StylePolino, M., Rho, H. S., Pina, M. P., Mallada, R., Carvalho, A. L., Romão, M. J., Coelhoso, I., Gardeniers, J. G. E., Crespo, J. G., & Portugal, C. A. M. (2021). Protein Crystallization in a Microfluidic Contactor with Nafion®117 Membranes. Membranes, 11(8), 549. https://doi.org/10.3390/membranes11080549