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Abstract: Protein crystallization still remains mostly an empirical science, as the production of crystals
with the required quality for X-ray analysis is dependent on the intensive screening of the best protein
crystallization and crystal’s derivatization conditions. Herein, this demanding step was addressed
by the development of a high-throughput and low-budget microfluidic platform consisting of an
ion exchange membrane (117 Nafion® membrane) sandwiched between a channel layer (stripping
phase compartment) and a wells layer (feed phase compartment) forming 75 independent micro-
contactors. This microfluidic device allows for a simultaneous and independent screening of multiple
protein crystallization and crystal derivatization conditions, using Hen Egg White Lysozyme (HEWL)
as the model protein and Hg2+ as the derivatizing agent. This microdevice offers well-regulated
crystallization and subsequent crystal derivatization processes based on the controlled transport
of water and ions provided by the 117 Nafion® membrane. Diffusion coefficients of water and the
derivatizing agent (Hg2+) were evaluated, showing the positive influence of the protein drop volume
on the number of crystals and crystal size. This microfluidic system allowed for crystals with good
structural stability and high X-ray diffraction quality and, thus, it is regarded as an efficient tool that
may contribute to the enhancement of the proteins’ crystals structural resolution.

Keywords: Nafion® membrane; membrane contactors; protein crystallization; solute diffusion;
protein structure

1. Introduction

The attainment of high-quality diffracting crystals is still the main limitation in protein
crystallography, the most employed method for the determination of the three-dimensional
structure of proteins. The diffraction quality is dependent on the internal order of the
crystal lattice. To obtain well-ordered crystals, several crystallization parameters such
as pH, temperature, solvent removal rate, and additives need to be assayed. Therefore,
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when the structure of a new protein needs to be unraveled, an enormous number of
pre-formulated conditions are commonly screened, before finding those that may lead to
crystals with the quality needed for an accurate crystallography analysis [1].

Microfluidic technology has been revolutionary for protein crystallization. The creativ-
ity of scientists has led to the development of several intricate chip designs (valve-based [2],
droplet-based [3], slip chips [4], or centrifugal designs [5]) that allowed for the fast screen-
ing of hundreds of process conditions, using only very low amounts of protein [6], in
devices that can be mounted in front of an X-ray beam, allowing for diffraction screening
without crystal handling [7].

On the other hand, advances in membrane technology have been driving the devel-
opment of membranes with precisely tailored characteristics, either by modulation of the
porosity of hydrophobic microporous membranes, e.g., polypropylene, or by controlling
the difference in water activity between the protein and the stripping solutions [8]. These
attributes contributed to an improved control over the solvent removal rate, which is
essential for regulation of the crystallization process. Membrane properties have shown to
be determinants for the control of crystal growth rates [9], shape [10], polymorphism [11]
and, consequently, the crystals’ diffraction quality [12].

In some cases, the 3D structure of novel proteins and specific protein structural folds can-
not be solved using the molecular replacement method, the incorporation of heavy atoms into
the crystal (derivatization) being necessary so that isomorphous replacement (MIR—Multiple
Isomorphous Replacement, SIR—Single Isomorphous Replacement, MIRAS—Multiple Iso-
morphous Replacement with Anomalous Scattering, or SIRAS—Single Isomorphous Replace-
ment with Anomalous Scattering) methods can be applied [13–17]. Crystal derivatization
is also a challenging procedure as the identification of the right heavy atom and concen-
tration for a specific protein may correspond to laborious work, requiring persistence.
Furthermore, crystal derivatization commonly involves the immersion of crystals into the
derivatization media, leading to easier crystal cracking and damaging due to the use of
heavy atom compounds that are too reactive or due to abrupt changes in the local growth
environment. Attempts were made to predict the interaction between the protein and the
heavy atoms [18,19], but in most cases, a previous screening of different heavy atoms and
concentrations becomes essential.

We have recently described how ion-exchange membranes can be used to facilitate
the derivatization of protein crystals with heavy atoms [20]. Ion-exchange membranes
are typically made of a hydrophobic backbone with attached charged groups [21]. Such
membranes are able to mediate the selective diffusion of ions (cations or anions depending
on the type of fixed charge groups attached to the polymer backbone) to the protein crystal
solution, leading to a smooth and controlled increase in the concentration of the target
ion, thus reducing the risks of cracking due to abrupt changes in the crystal environment
and crystal handling [20]. Besides the selective ion transport, ion-exchange membranes
promote water transport when a difference in water activity occurs between the two sides
of the membrane. In this case, water spontaneously moves from the least to the most
concentrated compartment [22]. Hence, controlled diffusion of water by osmosis could be
exploited to generate supersaturation and promote nucleation.

Herein, a commercial ion-exchange membrane (117 Nafion®) was integrated into a
PDMS (polydimethylsiloxane) microdevice to form 75 micro-contactors. The microdevice
consisted of two independent chambers (a wells layer dedicated to the crystallization
solution and a channels layer filled with stripping/derivatization solution) separated by
an ion-exchange flat membrane. In particular, each well in the crystallization chamber
can accommodate nano- or microliter volumes of protein solution, defining the area for
water transport and ion-exchange, whereas the transport rate of the different species in
solution is controlled by the ion-exchange 117 Nafion® membrane. In addition, due to
miniaturization, the volume of protein crystallization/derivatization solutions required in
the well/channel chambers is notably reduced while providing high throughput for the
preliminary screening of different crystallization/derivatization operational conditions.
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Thus, the final aim of this work was to demonstrate the feasibility of the ion-exchange
membrane-driven crystallization process in a dedicated Nafion®-based microfluidic de-
vice. In this regard, this work highlights the contribution of this microfluidic device for
improvement of protein crystallography processes, by promoting the needed conditions
for fast formation of protein crystals with high diffraction quality, which is an essential
requirement for solving the three-dimensional structure of proteins. The crystallization
performance, i.e., growth rate, size, and diffraction quality of crystals, was evaluated using
Hen Egg White Lysozyme (HEWL) as a protein model.

2. Materials and Methods
2.1. Crystallization Solutions

A sodium acetate buffer at 0.1 M and pH 4.6 was prepared using CH3COONa (Schar-
lab S.L., Barcelona, Spain). Lyophilized Hen Egg White Lysozyme (HEWL) from Sigma
Aldrich was dissolved in 0.1 M of CH3COONa at a concentration of 50 mg/mL (pro-
tein solution). NaCl (Applichem Panreac, Barcelona, Spain) was dissolved in 0.1 M of
CH3COONa (pH 4.6) to a concentration of 3.5% w/v (precipitant solution). The protein
and the precipitant solutions were mixed in equal volumes in order to obtain a starting
crystallization solution composed of 25 mg/mL of HEWL, 1.75% (w/v) NaCl, and 0.1 M of
CH3COONa at pH 4.6. A solution of 3.5% (w/v) NaCl in 0.1 M of CH3COONa at pH 4.6
was used as the stripping agent in the channels.

One of the most used heavy atoms in protein crystals derivatization is mercury. Indeed,
thanks to its high atomic number (hence, high number of electrons) and the ability to
establish covalent bonds with cysteine residues, it facilitates the derivatization process with
proteins containing these types of residues such as Lysozyme. Mercury can be available
for derivatization in a wide range of compounds, such as Hg(CH3COO)2, which has the
advantage of relatively good solubility in 0.1 M of CH3COONa buffer (conventionally
used for the crystallization of Lysozyme) compared to other derivatizing agents (such
as HgCl2) [13].

Hg(CH3COO)2 in solution can be found in the ionic form of CH3COO− and Hg2+.
Hence, in order to model the diffusion of Hg2+ through the membrane, measurements of the
mass transfer coefficient of Hg2+ to be eventually used for derivatization were performed
by using Hg(CH3COO)2 dissolved in a solution containing 0.1 M of CH3COONa at pH 4.6
and 0.59 M of NaCl.

2.2. Design and Fabrication of the Microdevice

The microdevice was fabricated by soft lithography [23–25]. Two photomasks, one
for a microwell layer and another one for a channel layer, were designed using CleWin
software (WieWeb software, Hengelo, The Netherlands). Master molds were fabricated
by standard photolithography (Figure 1A) [26]. A negative photoresist resin (SU-8 2150,
MicroChemicals GmbH, Ulm, Germany) was spun onto 4” Si wafers, baked, and exposed
to UV light in order to transfer the pattern from the mask to the photoresist layers on
the wafers. The subsequent use of an SU-8 developer allowed for the removal of the
soluble (nonexposed) parts of the resin. The final thickness of the photoresist structures
was measured with a Veeco Dektak 8 surface profiler and it was found to be 300 ± 15 µm
for both molds.

Polydimethylsiloxane (PDMS) mixture (Sylgard 184, Dow Corning, prepolymer:
curing agent = 10:1) was casted onto the master molds and baked at 80 ◦C for 1 h
(Figure 1B). For the channel layer, an amount of PDMS was casted to cover the mold
completely (Figure 1B). Instead, in the case of the wells layer, the volume of PDMS casted
was calculated in order to give a thickness lower than the height of the pillars, determining
the formation of holes, instead of cavities (Figure 1B). In order to flow the solutions inside
the channels, an inlet and an outlet were created by punching. Each device had 5 lines
of 15 wells for a total of 75 wells. The wells had a circular shape 1 mm in diameter (this
diameter was chosen to allow the harvesting of crystals with conventional crystallography
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loops) and 250 µm in depth. The channel compartment comprised 5 channels (with a
width of 2 mm and a depth of 300 µm), matching with the 5 lines of wells; therefore,
5 different solutions can be used simultaneously as stripping solutions (1 per channel) for
crystallization. The driving force in each channel would be dependent on the solution
inside the wells. The same channels may be later used to circulate the solutions selected for
crystal derivatization. An AutoCAD image (Autodesk, San Rafael, CA, USA) rendering the
three layers of the device is shown in Figure 1C; photos of the fabricated device are shown
in Figure 1D (cross-section) and Figure 1E (top-view).
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Figure 1. (A) Mold fabrication by photolithography process: SU8 photoresist deposition on Si wafer;
exposition of the designed mask to UV light; development of the SU8 photoresist to attain the final
mold. (B) The SU8 molds were used for the fabrication of both PDMS compartments by casting.
(C) AutoCAD image showing the different components of the microdevice, i.e., channel layer (on the
bottom), membrane (in between layers), and the wells layer (at the top). (D) Photo of the fabricated
microdevice. (E) Photo showing a top view of the fabricated microdevice (the channel layer was
filled with a molecular dye solution to highlight the presence of the channels, their geometry, and
dimension. The scale bar in figure (E) corresponds to 1 cm.

A 117 Nafion® membrane (Sigma-Aldrich, 1100EW, St. Louis, MI, USA) was sand-
wiched between the channel and the well layers. Nafion® is a material with a high degree
of swelling; therefore, the bonding with PDMS was quite challenging. Several procedures
are described in the literature [27–30], and the protocol developed by Pham et al., for the
commercial 117 Nafion® membrane, was elected and used in this work after optimiza-
tion [31]. Briefly, the Nafion® membrane was cleaned in 3% H2O2 at 80 ◦C for 1 h, H2O at
80 ◦C for 1 h, 1 M of H2SO4 at 80 ◦C for 1 h, and H2O at 80 ◦C for 1 h. The membrane was
dried at 80 ◦C for 24 h and then treated for 15 min at 150 ◦C in order to reduce the swelling
behavior. It has been reported that the thermal treatment of Nafion® membranes may in-
duce conformational changes and spatial reorientation of the hydrophobic and hydrophilic
nanodomains, leading to a lower water uptake and conductivity [32]. The washed and
thermally treated 117 Nafion® was modified with a corona discharge (BD-20AC Laboratory
Corona Treater, Chicago, IL, USA) for 10 min in order to generate hydroperoxide groups.
Previous trials were made with plasma oxygen equipment; however, the strong vacuum
led to a severe shrinkage of the membrane that turned to be too wavy to create good contact
with the modified PDMS surface.

The PDMS layers were treated with oxygen plasma for 60 s, in order to form hydroxide
groups, and then immersed in 4% triethoxyvinylsilane (VTES) (purchased from Sigma-
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Aldrich, 97%) in ethanol (Honeywell, purity ≥98.8%) with 10% of water for 2 min and
baked at 100 ◦C for 15 min to allow grafting to occur.

Afterward, the treated 117 Nafion® membrane was contacted with the grafted PDMS
and baked at 100 ◦C for 2 h to promote the formation of radical groups on the membrane,
which would attach to the vinyl group in PDMS-VTES and form the bonding.

After the bonding, the microdevice was soaked in 2 M of NaCl solution in order to
exchange acidic groups with Na+ and avoid pH changes in the crystallization solution that
may induce crystals’ cracking and/or dissolution. The NaCl solution was replaced until
the pH of the solution was kept neutral to ensure that all protons were exchanged for Na+.

2.3. Crystallization Experiments

Crystallization experiments were performed in order to confirm the ability of the
microdevice to produce crystals. First, the channels of the device were filled with the
stripping solution (3.5% w/v NaCl dissolved in 0.1 M of CH3COONa) using a syringe
pump, and, later, the wells were filled with the protein solution using a micropipette
(Figure 2). Mainly, three different volumes of protein solution were used: 500 nL, 1 µL,
and 2 µL, for the same membrane area. Each condition was repeated at least 9 times for
assessing the experimental reproducibility. Finally, the chip was placed in a sealed box to
prevent evaporation, in a room with controlled temperature (20 ◦C).
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Figure 2. Cross-section scheme of the microdevice.

2.4. Modeling of Water and Hg2+ Transport through 117 Nafion® Membrane

From structural investigations of the Nafion® ionomer, it is well-known that the
hydrophilic sulfonic groups organized in clusters can incorporate water and allow for
ions/protons and water transport. Accordingly, these properties were exploited, aim-
ing to remove water from the protein solution in order to achieve local supersaturation
and facilitate nucleation. The driving force for water transport in the microdevice was
established by filling the channels with a stripping solution with a lower water activity
compared to the protein solution placed in the wells (more details are reported in the
‘Crystallization experiments’ section). Note that, although water may permeate PDMS
(microdevice material), the water diffusion through the PDMS walls of the microdevice is
considered negligible, as the contacting area of the protein solution with the PDMS material
adjacent to the wells is much smaller than that with the Nafion® membrane. Furthermore,
the hydrophobic polytetrafluoroethylene (PTFE) backbone of Nafion® contains negatively
fixed charge groups, which enable the selective transport of cations.

In order to evaluate the transport of water through the 117 Nafion® membrane and
estimate the variation in NaCl concentration, a diffusion cell was set-up to mimic the
conditions of the crystallization environment in the micro-device.
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The diffusion cell, sandwiching the 117 Nafion® membrane (previously hydrated)
between two compartments, compartment A and B, is shown in Figure 3a. Compartment A
was filled with distilled water and compartment B was filled with a 0.55 M of NaCl solution
in order to create the driving force for mass transport (ions and/or water transport) to
occur. Two graduated pipettes were connected to the outlet of each compartment to record
changes in the volume as a function of time. In this situation, no ion-exchange process
occurred, due to the absence of a cation to be exchanged in compartment A with the Na+

available in compartment B. However, a leak of NaCl due to the high osmotic pressure
might still be possible [33]. In order to assess the extent of the leak and the variation in
driving force within the monitoring time, the conductivity of the solutions was evaluated
and the results are reported in Figure S1 in the Supporting Information (S.I.).
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The selective transport of cations promoted by the membrane might instead be ex-
ploited for a controlled diffusion of ions to/from the protein crystals solution, as well as
for a gentle crystal derivatization process. Derivatization of protein crystals commonly
takes place after crystal formation in order to maintain the isomorphism [13]. Hence,
when derivatization is performed, the composition of the protein crystal solution is already
equilibrated with the stripping solution as they have the same osmotic pressure. Therefore,
in order to investigate the transport of cations for derivatization in the microdevice, a
second diffusion cell (shown in Figure 3b) was set-up, in which conditions for crystal
derivatization were simulated. The diffusion cell was used to calculate the mass transfer
coefficient of Hg2+ across the membrane (previously equilibrated in a NaCl solution). Hg2+

is commonly used for the derivatization of protein crystals due to its ability to form cova-
lent bonds with cysteine residues [13] and, thus, it was selected to prove the concept of
this work. Two solutions with the same osmotic pressure were used. Compartment A was
filled with a solution containing 0.59 M of NaCl and 0.01 M of Hg(CH3COO)2, whereas
Compartment B was filled with a 0.6 M of NaCl solution. Na+ and Hg2+ were then allowed
to exchange until they reached equilibrium. Samples were taken over time, and the concen-
tration of Hg2+ in Compartment B was measured by an ICP−AES (inductively coupled
plasma−atomic emission spectrometer, Horiba Jobin-Yvon, France). The concentration of
Hg2+ corresponded to the average value of three replicates, with an associated error <5%.

2.5. X-ray Diffraction Analysis and Structure Determination

Previous to X-ray diffraction analysis, HEWL crystals were equilibrated for a few
seconds, first in a harvesting buffer (0.1 M of CH3COONa, pH 4.6, and 1 M of NaCl)
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and then in a cryo-protectant solution (harvesting buffer with 30% (v/v) glycerol from
Sigma-Aldrich).

X-ray diffraction analysis was performed using an in-house X-ray diffractometer (IµS
3.0 microfocus D8 Venture from Bruker, with CuKα radiation), coupled to a CMOS Photon
100 detector, at 110 K. Indexing and integration were performed using a PROTEUM3
software pipeline (Bruker AXS 2015). Scaled and merged intensities were converted
to amplitudes using the COMBAT program from the CCP4i suite [34]. The structure
was solved via molecular replacement (MR). MR is a method widely used in protein
crystallography where the structure of a previously studied protein containing similarities
with the structure of the protein under investigation is used as a model for recovering the
phase information lost during X-ray diffraction (phase problem [13,14,35]) and to resolve
the structure [36].

HEWL is widely studied in the literature; hence, the structure of a previously re-
solved HEWL molecule (3A8Z available at the protein data bank PDB [37]) has been
used as a search model. Phases were calculated using the Expert MR-PHASER function
from CCP4i2 suite. Model building and refinement were performed, iteratively, using
COOT [38] and REFMAC5 [39]. A final model was built using BUCCANEER [40] and
viewed in CCP4mg [41]. The MOLPROBITY program [42] was used for the validation of
the final model.

3. Results and Discussion

3.1. Estimation of Water and Hg2+ Transport across Nafion® Membrane

The water mass transfer coefficient was used to estimate the variation in salt concen-
tration in the protein solution due to osmosis. The mass transfer coefficient of Hg2+ and
NaCl were used to estimate the NaCl and Hg2+ concentration profiles over time in the
protein crystals solution during the crystal derivatization process.

When a cation-exchange membrane (as Nafion®) contacts a pure water solution on
one side and a salt solution on the other side, water moves from the water compartment
to the salt solution compartment until the osmotic pressure is equilibrated. In order to
calculate the mass transfer coefficient of water, a previously hydrated Nafion® membrane
was placed in the diffusion cell (2a) and the variation in volume was followed over time
in the two compartments (Figure 4). At the beginning of the osmosis process, the volume
decreased linearly with time in compartment A, with a slope of 0.125 mL/min, which
corresponds to the volumetric flow rate of water across the membrane (Qw).
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From Qw, it is possible to calculate the molar flux of water, Jw, considering the values
of density (d), molecular weight (Mw) of water, and the membrane area (A) (7.54 cm2),
as follows:

Jw =
Qwd
AMw

(1)

From Jw, the mass transfer coefficient Kw was calculated as follows:

Kw =
Jwl

(∆p− ∆π)
(2)

where ∆p is the hydrostatic pressure difference, ∆π is the osmotic pressure difference, and
l is the membrane thickness (178 µm). The hydrostatic pressure was considered negligible,
whereas ∆π was calculated as ∆π = ∆CRT, where ∆C is the molar concentration difference
of NaCl in the two compartments (the short measuring period ensured a very small
variation in driving force, i.e., 4%, with details reported in Figure S2 in the Supporting
Information). Hence, an average concentration value within the measurement interval was
used for this calculation (0.52 M), where R is the ideal gas constant (0.08206 L atm

mol K ) and T is
the temperature (298.15 K).

The concentrations of Hg2+ over time was also measured in the cell shown in Figure 3b for
a membrane already equilibrated in a NaCl solution in order to determine the mass transfer
coefficient of this ion. In this case, the osmotic pressure on the two sides at the beginning of
the experiment was the same. However, the charge difference between Hg2+ and Na+ leads
to the exchange of 2 Na+ cations for each Hg2+ cation, to maintain the electroneutrality,
changing the osmotic equilibrium between the two solutions. In order to reinstate the
osmotic equilibrium, some water might have crossed the membrane. However, as the
amount of Hg2+ used here was very small (10 mM), comparatively to the concentration that
was responsible for the total osmotic pressure (0.7 M), the water transport was negligible.
For this reason, the volume of the solutions in compartments A and B (on the two sides of
the membrane) was considered constant. Taking this into account, the molar flux (JHg) was
calculated by dividing the slope of the curve (0.00192 mM/h) in Figure 5 by the area of the
membrane (A) and multiplying by the volume (V) (Equation (3)):

JHg =
molHg

tA
(3)
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The JHg can be also defined as:

JHg = KHg∆C (4)

where KHg is the mass transfer coefficient and ∆C is the Hg2+ concentration difference
between the two sides of the membrane (i.e., between compartments A and B) that was
considered constant because of its small value (10 mM). Hence, KHg was calculated as:

KHg =
JHg

∆C
(5)

The mass transfer coefficients of water and Hg2+ through the Nafion® membrane are
compared in Table 1. The low mass transfer coefficient of Hg2+ indicates a slow diffusion
of this cation through the membrane, which is an excellent characteristic considering the
need to promote a gentle derivatization process.

Table 1. Mass transfer coefficient for water and Hg2+.

Substance Mass Transfer Coefficient (m/s)

Water 4.9× 10−6

Hg2+ 1.9× 10−9

The same rational was used to determine the concentration profile of NaCl in com-
partment A and the transport of NaCl through the membrane over time. These data are
shown in Figures S3 and S4, in the S.I., respectively.

3.2. Simulation of Transport in the Microdevice

Crystallization experiments in the microdevice were performed using the widely
investigated model protein lysozyme (Hen Egg White Lysozyme—HEWL). Crystallization
conditions for HEWL can be found in the phase diagram of the protein [43]. The phase
diagram of HEWL combined with simulations of the evolution of the salt concentration in
the micro-device was used to predict when the nucleation conditions were reached. The
evolution of the initial composition of protein solution (protein concentration: 25 mg/mL
and NaCl concentration: −1.75% (w/v)) to the final concentration equilibrated with the
stripping solution (protein concentration: 50 mg/mL and NaCl: −3.5% (w/v)) was overlaid
on the phase diagram in Figure 6. It is possible to notice that when the salt concentration
was about 2.9%, the solution was supersaturated at a level where nucleation is likely
to occur. By using the calculated mass transfer coefficient of water (Table 1) and the
geometric dimensions of the device, it was possible to simulate well the variation in NaCl
concentration in the protein over time, when a stripping solution of 3.5% (w/v) NaCl was
used in the channels to promote osmosis. Results of the simulation are reported in Figure 7.

The experimental simulation was run considering three different solution volumes
(V1 = 0.5 µL, V2 = 1 µL, V3 = 2 µL) and the same area (Awells = 7.85 cm2) for mass transport.
The time at which nucleation may start was highlighted, and the nucleation condition was
reached in a short fraction of an hour, for the three different volumes, meaning that the
nucleation kinetics was very fast.

In order to investigate the impact of Hg2+ on the crystals, a simulation was run in order
to estimate the increase in Hg2+ concentration in the wells (Figure 8). The protein solution
deposited in the wells at the beginning of the experiments had a NaCl concentration of
1.75% (w/v). Instead, the solution used as a stripping phase, in the channels, had a NaCl
concentration of 3.5% (w/v).
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Taking into consideration that the buffer type, concentration, and pH (CH3COONa
0.1 M, pH 4.6) were the same in both protein and stripping solutions, and that the contribu-
tion of the protein molecules to the osmotic pressure was negligible, the protein solution is
expected to present an osmotic pressure that is half of the stripping solution. The channels
volume (~33 µL) was significantly higher than the volume of the solution placed in the
wells (0.5–2 µL). Therefore, during the osmosis process, the change in concentration in the
channels is expected to be minimal while the solution in the well would tend to balance
the concentration with that in the channel. As equilibrium was reached mainly by water
transport, the volume at equilibrium in the wells would be half of the initial volume.

The crystal derivatization with Hg2+ would be performed only when crystallization is
completed [18]. For this reason, the volumes used for the calculation of the increase in Hg2+

concentration in the wells were half of the initial volumes. Considering these conditions,
the maximum cation concentration was reached in about 20 h for 250 nL, 40 h for 500 nL,
and about 80 h for 1 µL of the solution. Such long diffusion times will allow gentle transport
of the derivatized ions, reducing the risk of crystal cracking and damage during the process.
Furthermore, the different ion concentration–time dependences between the three volumes
might be useful for controlling the stability of the crystals and the crystal derivatization
efficiency. Crystal derivatization experiments in the microdevice are in progress; however,
they are not within the scope of this paper.

3.3. Crystallization of HEWL in the Microfluidic Device

The first crystallization experiments in the microdevice revealed the formation of HEWL
crystals after a short time (2 h), in accordance with the simulations in Figure 7. However, they
quickly degraded until complete disappearance (22 h, Figure 9). This empirical observation
was attributed to the H+/Na+ exchange process between the protonated 117 Nafion®

membrane and the protein solution. Consequently, the pH gradually decreased to an
extreme condition unbearable for the crystals, promoting its degradation.

In order to avoid this inconvenience, and once the chip bonding was unsuccessful
when the Na-exchanged 117 Nafion® membrane was used (demonstrated in preliminary
results not shown here), the microfluidic chip obtained after the PDMS-Nafion® assembly
(described in Section 2.2 “Design and fabrication of the microdevice”) was soaked in a
2 M NaCl solution to obtain the 117 Nafion® membrane in its sodium form. During the
H+/Na+ exchange process, the pH of the solution was monitored over time, and the NaCl
solution was periodically replaced until the pH reached a neutral and constant value. Once
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the microfluidic chip was equilibrated, HEWL crystallization experiments were repeated.
Pictures of the crystals obtained at different times are shown in Figure 10. In this case, it
was possible to notice that crystals showed a growing trend for over 5 days without signs of
degradation. This makes clear that, in order to use a Nafion® 117 membrane as nucleation
support for HEWL crystallization, the previous proton exchange process becomes essential
to avoid pH-driven degradation of the protein crystals.
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Reproducibility of the crystallization results was assessed for different volumes of
protein solution in the well-type microdevice. Each condition was repeated nine times.
Figure 11 displays the results related to the length and the number of crystals obtained,
using different volumes of the crystallization solution, varying from 0.5 to 2.0 µL but
maintaining the same membrane contact area (due to Nafion membrane hydrophobicity,
small volumes of protein solution may be accommodated on the membrane on a surface
area smaller than the well diameter, speeding-up the diffusion rate of the process; however,
the volumes used in this experiment allowed for all the drops to completely wet the
well surface area. Even though the final equilibrium condition and the water transport
rate through the membrane were supposedly the same, the number and size of crystals
increased with the volume of the solution dispensed in the well-type microdevice. The
higher number of crystals may be attributed to the higher amount of protein available for
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nucleation and crystal growth. In fact, no differences were found in the time required for
the first crystals to appear. This behavior is probably due to the low time shift for reaching
nucleation conditions among the different volumes tested.
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Figure 11. Crystal growth kinetics (top left) and the number of crystals per volume of solution (top right). On the bottom:
crystals grown in different volumes of solution, observed after 130 h.

In general, it is possible to conclude that the designed micro-device allows for the
control of the crystals’ number and size, by changing the volume of the protein solution
dispensed in the well-type micro-contactor. The crystals obtained showed high stability for
over 5 days.

3.4. X-ray Diffraction and Structure Determination

Data collection, processing, and refinement are reported in Table 2. The crystals
diffracted to a maximum resolution of 1.7 Å. The collected, indexed, and integrated data
were scaled and merged using the software pipeline in PROTEUM3 (Bruker AXS 2015).

The analyzed crystals belong to space group P43212 (the space group gives an indica-
tion of the type of symmetry of the crystal; this space group corresponds to a tetragonal
system where the unit cell dimensions a, b, and c are a = b 6= c [44]. HEWL crystals conven-
tionally belong to this space group). The diffraction data of the crystals are characterized
by a low R-merge value, high signal-to-noise ratio, and a completeness of 98.7%. The elec-
tron density map was generated after the structure solution by molecular replacement
(MR) using 3a8z as a reference structure. The R-work/R-free ratio (R-work is a parameter
that measures the deviation in the predicted model from reality, and for a well-resolved
structure, it should be <0.200; R-free is a parameter used to assess the overfitting of ex-
perimental data and should not excessively differ from R-work [45]) after refinement was
lowered to 0.177/0.216. According to Ramachandran statistics analysis (used to assess
stereochemical quality of the protein model), 93.97% of the residues were found in favored
regions (energetically favored values of the molecular torsion angles), 6.03% were found in
allowed regions, and no outlier residues were found. A ribbon representation of the HEWL
molecule is displayed in Figure 12. Summarizing, all the parameters evaluated in Table 2
and described in this section are indicators of high diffraction quality.
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Table 2. Statistics of X-ray diffraction data collection and automated model building and refinement
for HEWL crystals (values for the last resolution shell are in parentheses).

X-ray Diffraction Parameters and Statistics

space group P 43 21 2

wavelength (Å) 1.5418

resolution range (Å) 22.20–1.70 (1.80–1.70)

unit cell parameters (Å) a, b, c 78.6, 78.6, 36.9

total reflections 147469 (9518)

unique reflections 13166 (1981)

multiplicity 11.2 (4.8)

completeness (%) 98.7 (94.3)

mean I/sigma (I) 18.8 (2.1)

R-merge † 0.100 (0.662)

R-sigma + 0.055 (0.485)

Model Building and Refinement

R-work ‡/R-free * 0.177/0.216

N of nonhydrogen atoms 1226

N of macromolecule atoms 1058

N of protein residues 129

N of Sodium atoms 1

N of Chloride atoms 7

N of water molecules 136

RMSD (bonds) (Å) 0.009

RMSD (angles) (◦) 1.589

Ramachandran favored (%) 93.97

Ramachandran allowed (%) 6.03

Ramachandran outliers (%) 0.00

Average B-factor (Å2) main chain 13.5

Average B-factor (Å2) side chain 16.2

Average B-factor (Å2) for Na+ 23.3

Average B-factor (Å2) for Cl− 27.5

Average B-factor (Å2) for waters 24.9

† Rmerge =
∑hkl ∑n

i=1|Ii(hkl)−I(hkl)|
∑hkl ∑n

i=1 Ii(hkl) , where I is the observed intensity and

I is the statistically weighted average intensity of multiple observations;
+ Rsigma =

∑hkl
√

1/(n−1)∑n
i=1|Ii(hkl)−I(hkl)|

∑hkl ∑n
i=1 Ii(hkl) , a redundancy-independent version of

Rmerge; ‡ Rwork = ∑hkl ||Fobs(hkl)|−|Fcalc(hkl)||
∑hkl |Fobs(hkl)| , where |Fcalc| and |Fobs| are the calculated and

observed structure factor amplitudes, respectively; * R-free is calculated for a randomly
chosen 5% of the reflections.
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using the in-house collected data (blue) is superposed on the known structure of HEWL (yellow) 
(pdb code: 3a8z). The grey spheres correspond to Na+ atoms. The superposition of the pdb model 
and the calculated structure generate an rmsd (root-mean-square deviation of atomic position) of 
0.83 Å for 129 α carbon atoms. The picture was produced by using the program CCP4mg. 

Figure 12. Ribbon representation of HEWL protein. The model obtained by molecular replacement
using the in-house collected data (blue) is superposed on the known structure of HEWL (yellow)
(pdb code: 3a8z). The grey spheres correspond to Na+ atoms. The superposition of the pdb model
and the calculated structure generate an rmsd (root-mean-square deviation of atomic position) of
0.83 Å for 129 α carbon atoms. The picture was produced by using the program CCP4mg.

Additionally, in the case of completely unknown structures, where it is not possible
to select a searching model for applying the MR method for resolving the phase problem,
derivatization of the crystals might be performed using the same microdevice, allowing,
in this way, the possibility to approach the phase problem via performing isomorphous
replacement methods. In these cases, the derivatization process can be controlled by the
selective diffusion of ions across the membrane, avoiding abrupt changes in the local
environment and handling of the crystals [20]. Indeed, simulation of the transport of Hg2+

in the microdevice showed how it is possible to control the rate of ion diffusion by changing
the volume of protein solution.

4. Conclusions

Trial and error is still the leading strategy for finding conditions for protein crys-
tallization and for crystals derivatization, and hundreds (or thousands) of experimental
conditions usually need to be tried until suitable crystals are obtained; very often, the
amount of available pure protein is a limiting factor. Microfluidics technology provides
advantages to the protein crystallization field with several designs that allow for a lower
consumption of reagents and a higher number of trials. In addition, membrane technology
concurs with the control of supersaturation, as well as the diffusion rates of derivatizing
agents needed to obtain crystals with a high diffraction quality. In this work, a Nafion®

membrane was integrated with a polydimethylsiloxane (PDMS) microdevice for protein
crystallization. Functionality of the device was tested and proved to allow for a successful
crystallization of Hen Egg White Lysozyme (HEWL) and subsequent in situ and gentle
crystal derivatization [20] based on an efficient control of the diffusion rates of the deriva-
tizing agent (Hg2+ was used as a model agent in the present study), assured by an ion
exchange membrane (Nafion® 117) integrated in the microdevice. These conditions were
key to assure crystal structural integrity along the derivatization process, proving to be
a more efficient alternative to the traditional crystal soaking methodologies. This work
provides insights into the impact of the membrane (Nafion® membrane)-regulated mass
transport of water and derivatizing agents on protein crystallization and crystal deriva-
tization, highlighting the importance of mass transport studies for an enhanced design
of microfluidic devices for crystallization. The results obtained unveiled the dependence
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of the size and number of crystals on the volume of protein solution, showing that it is
possible to predefine the desirable crystal structural parameters by suitable selection of the
solution volume in the microdevice wells. The crystals grown in the micro-device were
harvested and analyzed by X-rays showing a high diffraction quality.

Furthermore, this work shows the importance of implementing microfabrication
methodologies that assure the chemical stability and inertness of the materials used for
the fabrication of devices for crystallization and crystal derivatization. The release of
compounds from the crystallization device may change the physicochemical conditions of
the processing media, such as changes in pH to extreme values (as observed in the present
work), affecting the structural integrity of the crystals.

Finally, showing the feasibility of the microfluidic device for subsequent successful
crystallization and derivatization processes, this work paves the way for exploring addi-
tional advantages offered by this microfluidic system. In particular, the presence of the
high number of wells (75 wells) and individualized channels is expected to allow for a
simultaneous screening of a high number of different conditions (75 different conditions),
allowing for faster, cheaper, and high-throughput crystal formation with the diffracting
quality required for a more efficient crystal structure resolution.
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