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1. The equilibrium state

To ensure that eventually reach the equilibrium state, we have measured the energy
ETot/kBT, temperature kB, and pressure P inside the simulated box. As shown in Fig.
S1, after a trend of decline at first, the energy, pressure, and temperature are basically
unchanged during the simulation. Therefore, we can determine that we get the necessary
equilibrium state.
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Figure S1. The energy (a), temperature (b) and pressure (c) as functions of time steps for the
microstructure.
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2. The shear flow

In this simulation, we chose the reverse non-equilibrium molecular dynamics (RNEMD)
method, in which the shear rate is the gradient of the fluid velocity along a particular di-
rection. As shown in Fig. S2, when we apply the shear flow along the x-direction, its
maximum velocity appears at z = 0 and z = L, while its minimum velocity appears at
z = L/2. The periodic simulation box with the length L is subdivided into several slabs in
the z-direction, where the atoms inside the slab at z = 0 and z = L/2 are propelled in two
opposite z-directions, respectively. By finding the atom with the highest movement against
the desired slab movement, the momentums of the two atoms are interchanged. If the two
atoms have the same mass, the non-physical momentum exchange preserves the linear
momentum and kinetic energy of the system as a whole. The potential energy and the
total energy of the system are conserved because the positions of the atoms are constant.
Compared with other methods, there is no energy being deposited into the simulation,
hence, it is unnecessary to use an external thermostat to eliminate energy [1].
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Figure S2. Schematic view of shear flow in the simulation box.
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3. The method of density calculation

Along the z-axis, we divide the simulation box into 100 layers on average, count the
number of each particle in each layer, and divide the result with the volume fraction of
each layer to obtain the density distribution curve. To reduce the error, we select 30 kinds
of structure data of the equilibrium state that have been reached and calculate their density
distribution with the same method. Finally, the average density value of these 30 kinds of
data is obtained, and the density distribution curve is drawn.
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4. The gyration tensor

To more accurately quantify the shape, we calculate the three-dimensional gyration
tensor of the polymer, which is defined as follows [2]:
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Based on the gyration tensor, we can obtain the gyration radius of the polymer, which can
be calculated as follows:
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In order to clearly show the effect of shear flow on the microstructure, three components of
the average radius of gyration are calculated and the anisotropic conformations of lipid
molecules under strong and weak shear are compared.
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5. The shape factor

Imagining that a unit mass is located at every one of the N steps of the walk, the tensor
T with components can be constructed as:
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For three-dimensional walks, the matrix has three eigenvalues, L2
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Then we define the shape factor expression as:
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As for the shape factors, an alternative definition makes sense:
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(See [3,4] for the detailed derivation process, which is briefly summarized here.)
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6. Tension

The instantaneous pressure tensor is defined as:

pβα = pkin
βα + pint

βα (8)

where pkin
βα represent a kinetic contribution from throughput of linear momentum resulting

from the particle velocities and pint
βα represent an internal contribution from intermolecular

and intramolecular forces. The pressure due to internal forces is given as:
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Now we rearrange this expression from a sum over all N planes into a sum over all N
particles and αi = ∆α1 + · · ·+ ∆αi, V = Aαα0:
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The kinetic contribution of the pressure is defined as:
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Then we average over all cross sections of an equal small width ∆α from α = 0 to α = α0 to
obtain:
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Hence we can get the complete result:
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(See [5] for the detailed derivation process, which is briefly summarized here.)
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