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Abstract: Phospholipid membranes surround the cell and its internal organelles, and their multicom-
ponent nature allows the formation of domains that are important in cellular signalling, the immune
system, and bacterial infection. Cytoplasmic compartments are also created by the phase separation
of intrinsically disordered proteins into biomolecular condensates. The ubiquity of lipid membranes
and protein condensates raises the question of how three-dimensional droplets might interact with
two-dimensional domains, and whether this coupling has physiological or pathological importance.
Here, we explore the equilibrium morphologies of a dilute phase of a model disordered protein
interacting with an ideal-mixing, two-component lipid membrane using coarse-grained molecular
simulations. We find that the proteins can wet the membrane with and without domain formation,
and form phase separated droplets bound to membrane domains. Results from much larger simula-
tions performed on a novel non-von-Neumann compute architecture called POETS, which greatly
accelerates their execution compared to conventional hardware, confirm the observations. Reducing
the wall clock time for such simulations requires new architectures and computational techniques.
We demonstrate here an inter-disciplinary approach that uses real-world biophysical questions to
drive the development of new computing hardware and simulation algorithms.

Keywords: membrane domains; intrinsically-disordered protein; phase separation; biomolecular
condensate; coarse-grained simulation; event-based computing; hardware-accelerated simulation;
application-specific hardware

1. Introduction

Soft surfaces are ubiquitous in living cells and are typified by phospholipid mem-
branes that bound the cell and its internal organelles [1]. Membranes allow compositionally-
distinct environments for incompatible biochemistry and provide specialized surfaces to
mediate material and information transport. Although viewed originally as merely struc-
tural boundaries, they are now recognized as active participants in cellular dynamics [2,3].
They undergo morphological transitions between distinct shapes in response to weak exter-
nal influences [4], and in turn exert forces on membrane-associated particles or materials [5].
Their multicomponent nature allows regulated demixing of a subset of their component
lipids and proteins to assemble into localized domains to carry out transient functions [3,6].
Pathological domain formation occurs when bacteria such as E. Coli and Shigelle release
nm-sized rigid toxin particles in order to infect the cell [7]. Toxin particles adsorb to the
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cellular plasma membrane, cluster into domains, and invaginate into the cell carrying their
toxic payload that ultimately destroys the cell and aids the life cycle of the bacterium [8].

Another form of fluid interface that is increasingly recognized as crucial for compart-
mentalizing the cellular and nuclear cytoplasm is the surface of biomolecular condensates
or membraneless organelles [9–12]. These are fluid droplets that form by liquid–liquid
phase separation (LLPS) of a wide range of intrinsically-disordered proteins (IDPs) [13].
They have numerous functions in the cell, including regulation of biochemical reactions [14],
sequestering stalled RNA translation in stress granules [15], chromatin organization in
the nucleus [16], and organizing the presynaptic axon and postsynaptic density in neu-
rons [17,18]. Unlike lipid membranes, the formation of biomolecular condensates (BCs)
in vivo is usually reversible: The cell actively assembles them to perform a function and
they subsequently melt away [19]. However, they can transition irreversibly into patholog-
ical rigid states in experiments [20–22], a transition that is hypothesized to be important
for neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s dis-
ease [23]. Evidence is emerging that they are implicated in the dysregulation of cellular
processes occurring in cancer [24–26].

The cellular cytoplasm is a crowded place: It is estimated that nowhere in a cell is
more than 50 nm from a lipid membrane [1]. The combination of two-dimensional fluid
lipid membranes, which can be relatively easily deformed, and three-dimensional fluid
protein droplets could theoretically lead to a variety of morphologies [4,27–29]. Membranes
regulate the formation of BCs that help assemble protein signaling clusters [30–32], and
mediate immune cell signalling [33–35]. Recent experiments show that phase separation
of T cell proteins at the surface of giant unilamellar lipid vesicles drives lipid domain
formation that in turn is able to recruit additional proteins to the domains [36]. This
provides a starting point for rational design of artificial organelles [37].

In this work, we qualitatively explored the equilibrium morphologies of a dilute
phase of self-associating model IDPs near a well-mixed, two-component lipid bilayer using
the coarse-grained, explicit-solvent simulation technique of dissipative particle dynamics
(DPD) [38–40], which is commonly used for simulating membranes [41,42], and complex
fluids [43]. In our model, the two lipid species have identical molecular structure and
interactions with each other, so that only their interaction with the IDPs can drive domain
formation. The IDPs are modeled as soluble telechelic polymers (linear molecules with
self-associating endcaps [44]). We first investigated how the IDPs organize the minority
phase lipid by direct interaction with their headgroups, to simulate wetting phenomena.
We then extended our exploration by attaching a polymeric linker to the minority phase
lipid headgroups to better mimic the flexible cytoplasmic tails of transmembrane signalling
proteins [32,35]. The linkers contain a linear sequence of sticky and inert domains, and we
explored the morphological outcome of the system when the IDP endcaps are attracted to
the sticky domains.

We a priori envisaged several morphological outcomes for the IDP/membrane system
as the relative strengths of the IDP self-attraction and IDP-lipid/linker attraction are varied,
and these are illustrated in Figure 1.

When both interactions are weak, the membrane is well mixed and the IDPs are
dispersed in the solvent (a, IDPs not shown). In the absence of an attraction of the IDPs
for the minority phase lipids, we expected the membrane to be well mixed, and the IDPs
dispersed in the bulk solvent if their self-attraction is low (as in a), or phase separated, if
their self-attraction is high (b). Increasing the attraction of the IDPs for the lipid headgroups
leads to a morphology that is controlled by their self-attraction: if this is low, they may
form a thin wetting layer (c), while a strong self-attraction may lead to a phase separated
droplet adhering to a minority phase lipid domain (d). We observed all these results
in the simulations, indicating that the equilibrium states of the membrane and IDPs are
accessible to DPD simulations. Theoretical calculations have predicted a range of wetting
states resulting from the adsorption of polymeric solute molecules on a membrane surface.
In particular, it was found that surface phase transitions can occur under conditions in
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which bulk phase separation is impossible at any solute concentration [27]. Monte Carlo
simulations have been used to study the cooperativity of receptor-ligand binding and
domain formation in membrane binding [45]. But a molecular-scale picture of the structural
organization of membrane-associated BCs is still missing.
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vent), a large number of parameters must be specified to define its state. Additionally, the 
simulated system is relatively small (~10–100 nanometres in linear dimension), and we 
may legitimately ask: What are the prospects of improving its biological fidelity? In con-
sidering this question, we encounter the barrier of the rapidly increasing computational 
cost of simulating a system of increasing size while retaining near-molecular resolution.  

Biological membranes evolve on multiple timescales that are hard to span even with 
coarse-grained simulation techniques [46–49]. The resources needed to simulate a mem-
brane of linear dimension L on a single compute core scale at least as L5, allowing for the 
spatial increase and time for diffusive processes to propagate, so it is challenging to extend 
such simulations to near-cell scale problems (~microns). The Folding@home consortium 
recently harnessed more than one million devices across the world to explore conforma-
tional transitions of the SARS-CoV-2 spike protein with an effective performance of 1.01 
exaflops [50]. Even this extraordinary power is not sufficient to simulate the interaction 
of, for example, a complete virus particle with the host cell membrane [49]. 

This is not a new problem. Conventional parallel programming paradigms using, 
e.g., the message passing interface (MPI) system, increase the simulated volume by dedi-
cating many compute cores to one simulation [51]. However, they are limited by the re-
quirement that the compute cost per core must exceed the messaging cost, which necessi-
tates a large number of particles to be assigned to each core. This limitation is not removed 
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Although our system contains only three molecular species (not including the solvent),
a large number of parameters must be specified to define its state. Additionally, the
simulated system is relatively small (~10–100 nanometres in linear dimension), and we may
legitimately ask: What are the prospects of improving its biological fidelity? In considering
this question, we encounter the barrier of the rapidly increasing computational cost of
simulating a system of increasing size while retaining near-molecular resolution.

Biological membranes evolve on multiple timescales that are hard to span even with
coarse-grained simulation techniques [46–49]. The resources needed to simulate a mem-
brane of linear dimension L on a single compute core scale at least as L5, allowing for the
spatial increase and time for diffusive processes to propagate, so it is challenging to extend
such simulations to near-cell scale problems (~microns). The Folding@home consortium
recently harnessed more than one million devices across the world to explore confor-
mational transitions of the SARS-CoV-2 spike protein with an effective performance of
1.01 exaflops [50]. Even this extraordinary power is not sufficient to simulate the interaction
of, for example, a complete virus particle with the host cell membrane [49].

This is not a new problem. Conventional parallel programming paradigms using,
e.g., the message passing interface (MPI) system, increase the simulated volume by ded-
icating many compute cores to one simulation [51]. However, they are limited by the
requirement that the compute cost per core must exceed the messaging cost, which necessi-
tates a large number of particles to be assigned to each core. This limitation is not removed
by adding more cores, but it can be eliminated by the elegant scheme we describe below,
and which we have used to carry out large-scale simulations to validate our main results.

Since 2016, the Engineering and Physical Sciences Research Council of the UK has
funded a project called POETS—Partially-Ordered Event-Triggered Systems (POETS)—that
applies the non-von-Neumann computer architecture called event-based computing to
large-scale computational problems [52]. POETS is not a general-purpose computer: Each
application must be transformed into a graph in order to run on POETS, and reimplemented
in the POETS domain specific language. We took the open source DPD code Osprey-
DPD [53], converted it to run in POETS, and used it to explore the larger system size
presented here. POETS-DPD allowed us to simulate larger systems at a reduced cost—
both in terms of wall clock time and electricity consumed—compared to conventional
CPU/GPU hardware [54].
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In POETS-DPD, the simulation volume is divided into a grid of cells similar to that
used in conventional MPI-based parallel schemes. Crucially, in contrast to MPI-based
simulations, each grid cell contains only a few particles and is assigned to its own compute
core, so each grid cell’s computing step is very fast. Messaging between cores is executed
in hardware and is also fast. Because the limitation of compute cost >> messaging cost has
been removed, the system as a whole can be scaled to any volume by simply adding more
cores, and it exhibits almost perfect weak scaling.

We showcase in this special issue results obtained with conventional DPD and POETS-
DPD, and demonstrate that event-based computing opens up exciting pathways to near
cell-scale computational exploration. We use an inter-disciplinary approach that combines
the development of new hardware and simulation algorithms on the bespoke computational
hardware with the real-world biophysical problem of predicting the influence of protein
phase separation on membrane organization. The POETS-DPD hardware and software
is still under development, but the initial version used here provides functionally correct
answers at speeds which are substantially faster than existing systems, and allows us to
validate the dynamical phenomena we observe between small and large systems over
long timescales.

The principal contributions of this paper are two-fold:

1. We present a simulation-based exploration of the morphological outcomes resulting from
the 3D phase separation of intrinsically-disordered proteins near a 2D lipid membrane;

2. We describe the novel POETS compute architecture and the algorithm used in POETS-
DPD, and demonstrate the power of this approach by simulating selected systems
at a fraction of the wall clock time: a 14 cpu-day conventional DPD simulation is
completed by POETS-DPD in 8 h, a speedup of more than a factor of 40.

The remainder of the paper is organized as follows. In Section 2, we briefly describe
the dissipative particle dynamics simulation technique and the event-based hardware
and POETS-DPD implementation, referring the reader to the literature for more details.
Section 3 presents our main results on the equilibrium morphologies observed in the
simulations. Section 4 discusses the powerful advantage of POETS-DPD by highlighting
much larger systems. Finally, in Section 5, we illuminate the path ahead for using massively
parallel POETS-DPD to explore near-cell scale dynamic phenomena.

2. Materials and Methods
2.1. Dissipative Particle Dynamics Simulations

Dissipative particle dynamics (DPD) is a coarse-grained, explicit-solvent form of
molecular dynamics originally designed to simulate the hydrodynamic behavior of complex
fluids [38–40]. In DPD, atoms and atomic groups are grouped into beads, of mass m,
which interact via three non-bonded, short-ranged (vanish beyond a cut-off distance d0),
soft, momentum-conserving forces. A conservative force between each bead type pair
(characterized by a strength parameter aij for beads of type i and j) gives beads a chemical
identity, such as hydrophobic oil particles or hydrophilic amino acid residues. Additionally,
a dissipative force (characterized by the parameter γij) and random force (whose strength
σij is related to the dissipative force parameter by the fluctuation-dissipation theorem
σ2

ij = 2γijkBT) provide a thermostat that keeps the system temperature kBT constant. More
details of the force field are given in previous work [55]. Beads are connected into molecules
with Hookean springs, and a bending stiffness may be applied via an additional bond
angle-dependent potential. Once the forces are specified for all bead and molecule types
in a simulation, the Newtonian equations of motion for the beads are integrated using a
modified Velocity Verlet scheme. Because the non-bonded forces are soft, the integration
scheme is able to use a larger time-step than is possible in atomistic molecular dynamics,
and the grouping of several atomic groups into each bead reduces the number of degrees of
freedom needing to be integrated. These two factors make DPD several orders of magnitude
faster than traditional atomistic and coarse-grained molecular dynamics.
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DPD has been extensively used to simulate lipid membranes [41,56], domain formation
in two-component membranes [57,58], nanoparticles interacting with membranes [59,60],
and many other soft matter systems [43]. We adopt here the model of Grafmüller et al.
for the lipid molecules [61], and their molecular shape is shown in Figure 2. Briefly, each
lipid has a headgroup composed of four hydrophilic beads (HA for the major species, HB
for the minor species), and two tails each containing four hydrophobic beads (TA for the
major species, TB for the minor species). The tails are connected to the final two adjacent
head beads as shown in Figure 2. The IDPs are modeled as linear, semi-flexible polymers
(backbone beads of type B) with self-associating endcaps containing four beads (bead
type E) [55]. Water was represented by a single bead W. Both backbone and endcap beads
in the IDPs are hydrophilic, and it is only the self-attraction of their endcaps that drives their
phase separation. The full set of DPD conservative force parameters is given in Table 1. The
two parameters aEE and aEM set the attraction between the IDP endcaps and themselves
and the minority lipid headgroups, respectively, and are varied systematically in Section 3.1.
The parameter aES sets the attraction of the IDP endcaps and the sticky domains in the
linker attached to the minority phase lipid in Section 3.4. The dissipative force parameter

γij for all beads was 4.5 (in units of
√

mkBT/d2
0). Beads were bonded into molecules using

Hookean springs with potential parameters of 128 and 0.5 (in units of kBT/d2
0 and d0

respectively). A three-body bending potential of the form k3 (1 − cos(ϕ − ϕ0)) was applied
to adjacent triples of backbone beads (B) in the IDPs, and the linker beads L and S when
they were present, with parameters k3 = 5 kBT and ϕ0 = 0. A similar potential was applied
to the lipid tails with parameters k3 = 15 kBT and ϕ0 = 0,. Further details of the simulation
technique are given in the literature [40,55,61].
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Table 1. Bead–bead conservative force parameters aij (in units of kBT/d0) for all bead types. The
table is symmetric. The parameters aEE, aEM, and aES specify the attraction between the IDP endcaps
and themselves, the minority lipid headgroup, and the sticky domains in the linkers respectively as
described in the text.

aij W E B HA TA HB TB L S

W 25

E 25 aEE

B 23 25 25

HA 30 30 30 30

TA 75 35 35 35 10

HB 30 aEM 30 30 35 30

TB 75 35 35 35 10 35 10

L 30 30 30 30 35 30 35 30

S 30 aES 30 30 35 30 35 30 30

All simulations took place in a box of size 40 × 40 × 48 (d0)3 unless otherwise stated
and periodic boundary conditions were applied in all three dimensions. A single planar
membrane was pre-assembled with its normal along the long axis, and the minority phase
lipids were randomly distributed in the upper monolayer only to localize IDP/membrane
interactions to one side. A given number of IDPs were dispersed randomly throughout
the remaining space and the simulation box was filled with solvent beads to the average
bead density ρd3

0 = 3. The DPD length scale is set to d0 = 1 nm from the size of the
lipid headgroups [41]. We set the reduced system temperature to kBT = 1 [40]. Each
simulation was run for 3 million time-steps unless otherwise stated using an integration

step size of 0.02 τ, where τ =
√

md2
0/kBT is the DPD timescale. Because we are interested

in equilibrium properties, we did not attempt to fix the simulation timescale more precisely.
Results in the 40 × 40 × 48 (d0)3 simulation box are generated using the open-source,

single-thread DPD code OSPREY-DPD [53]. Simulations in the larger box 100 × 100 × 48
(d0)3 are performed using POETS-DPD as described next.

2.2. Massively Parallel Event-Based Simulations

The larger simulations in this work were performed on a new computer technology
called POETS—Partially Ordered Event-triggered Systems [52]. POETS represents compu-
tational problems as a graph: vertices in the graph are independent computational threads;
and edges between vertices represent channels that transport messages between threads.
The abstract, arbitrary computational graph is mapped onto a fixed hardware network of
RISC-V processors [62], which provides tens of thousands of hardware threads in the space
and power envelope that would usually support only a few hundred conventional x86
threads. POETS is an ongoing research project (https://www.poets-project.org; accessed
on 18 December 2021) but preliminary results show that it is highly suited to DPD simula-
tions [54]. We used it both as an efficient way to produce the large-scale results presented
here, and to evaluate its potential for production use in mesoscale research and simulation.

POETS is not a general-purpose computer. Each application must be transformed
into a graph in order to run on POETS, and reimplemented in the POETS domain specific
language. For our case of DPD simulations, we follow the same discretization of space
approach used to parallelize DPD for the MPI framework. The simulation volume is
spatially subdivided into a cubic array of unit cells for which the beads in each cell are
managed by a single computational thread. Each cell becomes a vertex in the graph, and
each vertex has edges to its 26 neighboring cells to represent information flows within each
simulated time-step. A key point of POETS messaging is that it is very fast and consumes
few cycles: sending a message is just one machine instruction, with message latencies

https://www.poets-project.org
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ranging from 1–10 micro-seconds, depending on the physical distance between cores. This
contrasts with MPI messages that are typically very slow compared to a local function call,
requiring hundreds of instructions to prepare, and with latencies ranging from 10–1000
micro-seconds, depending on the message size.

A big algorithmic difference between DPD on POETS and MPI is that the volume
of space managed by a cell in the POETS implementation is comparable to the DPD non-
bonded cut-off distance (d0), so each cell contains only a few particles. In comparison, an
MPI-enabled DPD must use much larger cells containing thousands of beads to ensure
that the messaging cost is a small fraction of the total runtime. The difference between
these two approaches is shown graphically in Figure 3. Effectively, because messaging in
POETS is so cheap, we are able to use very large numbers of light-weight CPUs with each
managing only a few beads.
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Once ownership of all the unit cells in the simulation space has been assigned to
physical POETS CPUs, the DPD algorithm executes in a highly concurrent fashion, with
each thread operating independently and synchronized only by the messages containing
beads. We only sketch the main ideas here, in order to give a sense of how it works and
refer the read to the literature for more details [54]. POET-DPD executes in in two phases:

1. Force calculation

a Sharing: Broadcast each resident bead position and velocity to neighbors;
b Integration: For each received bead, calculate non-bonded DPD and Hookean

bond interactions with resident cells;
c AngleForces: Once head and tail beads for an angle bond are received by

middle bead, calculate angle forces and broadcast to neighbors (which must
include the owner of the angle bond’s head and tail;

d AngleAddition: If an angle force is received and this cell contains the related
head or tail bead, apply angle-bond forces to that head/tail.

2. Bead movement

a Movement: Apply equations of motion to all beads resident in the cell;
b BeadExit: If any bead leaves the cell, broadcast it to neighbors and remove

from resident set;
c BeadEntrance: If a bead is received from a neighbor and its new position is in

the current cell, add it to the resident set.

3. Go back to step 1 for next step of simulation

This is a very high-level overview, but it highlights some of the important computa-
tional characteristics:
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Concurrent: Each thread is running independently, so this approach is concurrent,
where lots of threads do different things with loose synchronization, rather than parallel,
where lots of threads to the same thing with tight synchronization.

Fine-grained: The simulation is decomposed into one computational thread per unit-
volume cell, with each thread potentially only handling 3 or 4 beads, and resulting in
thousands or millions of concurrent compute threads.

Event-triggered: Messages trigger computation, rather than computation being used
to schedule messages. Within each phase, the sending and receiving of messages can be
interleaved, overlapping compute and communication.

Broadcasts: Rather than aiming messages only at the correct receiver, we broadcast
messages to all possible receivers. This might seem counter-intuitive, but due to the tight
binding between processors and network in POETS this is very efficient.

Single algorithm: All calculations, including Hookean and angle bonds, are integrated
into the same algorithm on the same compute thread, and handled concurrently with DPD
force calculation.

There is obviously a lot more computational detail in precisely how this is imple-
mented, not least because the experimental goals of the paper were used to drive devel-
opment of the algorithms and methods. This meant that we had to handle the edge-cases
needed in practical simulations, rather than just assuming-away the difficult parts in the
pursuit of headline performance figures that do not translate to real-world performance.

For example, the need to handle angle bonds completely changed the way that we
handled bonds within the algorithm. Our original algorithmic approach used a faster
method with fewer algorithmic steps, but ultimately could only handle Hookean bonds
efficiently. Though it was very fast, this was for a problem which is less useful in practice
for end-users. By having computer scientists, hardware engineers, and bio-physics end-
users working together we tried to avoid that trap, and tackle the more difficult but useful
problems head on.

3. Results
3.1. Influence of the IDP-Membrane Affinity on the Equilibrium Morphology

We were interested in how compositionally-distinct domains in a multicomponent
membrane may be induced by the nearby bulk phase separation of intrinsically-disordered
proteins. As stated, the problem has too many parameters to be efficiently presented, and it
is unfeasible to exhaustively explore its high-dimensional parameter space. We therefore
studied the simplest system that may exhibit interesting behavior—a two-component
membrane and a single type of IDP—and qualitatively enumerate its equilibrium states.
The membrane contains a major lipid species and a smaller fraction of a minor lipid species,
and we fixed their number fractions to give 1989 and 397 major and minor lipid molecules,
respectively, corresponding to a minor fraction of 0.166. This ensures that a domain (if
formed) is much larger than the lipid molecules but smaller than the membrane area,
thereby reducing the effects of the boundary conditions. The lipid molecules possess
identical structures and interactions and are well mixed in the absence of any influence of
the IDPs. We initially fixed the backbone length of the IDPs to 6 beads and refer to them by
their backbone length in an obvious notation as B6. We started with 397 B6 molecules in the
bulk phase. Note that the IDP backbone and endcap beads are hydrophilic, and only their
endcap self-attraction drives their phase separation. We varied the IDP self-attraction and
their affinity to the minority phase lipid headgroups by changing the conservative DPD
interaction parameters aEE, aEM respectively. We defined dimensionless parameters to
quantify the IDP endcap–endcap attraction (εEE), and the endcap-minority lipid headgroup
(εEM) attraction by:

εEE = (aWE − aEE)/aWE

εEM = (aWE − aEM)/aWE



Membranes 2022, 12, 17 9 of 20

where aWE is the DPD conservative interaction parameter for the water/IDP-endcap inter-
action. We explored the range 0 ≤ εij ≤ 1, for which 0 corresponds to no net attraction
between bead types i, j (compared to their interaction with the solvent beads) and 1 to a
very strong attraction.

When there was no attraction of the IDPs for themselves nor the membrane, εEE = εEM = 0,
they remained dispersed in the solvent and the membrane was well mixed (Figure 4,
Supplementary Video S1). In the following figures, the left panel shows the whole system
while the right panel shows just the membrane for clarity.
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Increasing εEE while keeping the εEM zero led to bulk phase separation of the IDPs
without influencing the membrane, which remained well mixed (Figure 5 and
Supplementary Video S2). The value of εEE = 0.68 is not very strong, leading to the
droplet being in equilibrium with the dilute phase of IDPs dispersed in the solvent.

Increasing εEM = 0.8 while keeping εEE zero caused the IDPs to wet the mem-
brane, forming a thin layer as their endcaps bind to the lipid headgroups (Figure 6 and
Supplementary Video S3). For the chosen fraction of minority phase lipid, the IDPs were
able to saturate the domain leaving some excess IDPs in the solvent. It is interesting to
note that the wetting domain formed as the result of the adsorption of the IDPs to the
minority lipid headgroups because the IDPs have no tendency to phase separate. The short
B6 IDPs keep the lipids adsorbed to their endcaps in close proximity. When two or more
such adsorbed IDPs approach by diffusion, the thermal fluctuations of the IDPs lead to
their mixing between the lipids. This caused the IDPs to effectively connect all the minority
lipids into a large domain instead of independent small clusters. However, the wetted
domain was non-circular, indicating it has a low line tension, and small patches of lipid
occasionally detach, taking a few IDPs with them before reattaching. We note that although
the minor lipid species comprises only 16% of the total number of lipids, they are all in the
upper monolayer and hence can occupy an area up to 32% of the monolayer’s area.
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Figure 5. Increasing the IDP self-attraction with no attraction to the membrane leads to a dense
protein droplet within a dilute phase, and leaves the membrane well mixed.

Finally, increasing both affinities to εEE = εEM = 0.8 led to the formation of a bulk
droplet of IDP and wetting of a single domain in the membrane. After diffusing for some
time, the droplet adsorbed to the domain, but at the selected concentration, it protruded
from the membrane, forming a membrane-associated dense phase. (Figure 7 and Supple-
mentary Video S4). The domain fluctuated around a circular shape, indicating the existence
of a fairly high line tension. Small numbers of majority phase lipid sometimes diffused
through the domain as seen in the movie Supplementary Video S4.

Our results for the equilibrium states of the system are summarized in Figure 8 as a two-
dimensional morphology diagram with the endcap self-attraction εEE along the abscissa
and the endcap–lipid headgroup εEM along the ordinate. We reemphasize that there was no
attraction between the majority and minority phase lipids, and the observed domains were
created only by the influence of the IDPs. At the origin, there was no attraction between the
IDPs and the membrane nor between themselves, and the membrane was well mixed with
the IDPs dispersed in bulk solvent (invisible for clarity). Increasing the IDP self-attraction
εEE while keeping their attraction to the membrane εEM low (bottom right) led to their
bulk phase separation while the membrane is well mixed. Increasing the IDP attraction for
the membrane εEM while it has no self-attraction (top left) led to wetting of the membrane
until the minority phase lipids are covered and excess IDPs remain in the bulk. When both
interactions were high (top right), the IDPs drove domain formation in the membrane and
adsorbed to it forming a droplet that projects into the solvent.
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3.2. Reversible Coupling of Phase Separation and Domain Formation

Membrane domains frequently form transiently in response to cellular signals [32,35].
We observed a reversible transition between a phase separated droplet in the bulk solvent
and membrane wetting that was induced by turning on and off the attraction of the IDPs
to the minority lipids. Figure 9 shows snapshots from a simulation of 494 IDPs and
395/1978 minority and majority phase lipids, respectively. The timing of the snapshots
is given as a fraction of the total simulation time of Tmax = 3 × 106 time steps. The
IDPs were initially neutral towards the minority phase lipids (εEM = 0), but had a self-
attraction (εEE = 0.68) that caused them to phase separate into a droplet in the bulk (see
Supplementary Video S5). At time 0.2 Tmax, a strong attraction (εEM = 0.8) of the IDP
endcaps to the minority lipids was turned on. As the IDPs adsorbed to the minority
lipids and drove them into a single domain, the droplet dissolved because the bulk IDP
concentration fell below that at which it is in equilibrium with its dilute phase. The
IDP/lipid attraction was removed at time 0.85 Tmax and the IDPs left the membrane and
reassembled in the bulk while the membrane rapidly returned to being well mixed. The
time required for the membrane to return to a well-mixed state and the IDPs to reassemble
in the bulk was much shorter than that for the wetting domain to form.
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3.3. Increasing IDP Length Results in Patchy Domains

We next explored how the backbone length of the IDPs affected the domain morphol-
ogy. We recall that IDPs with a short backbone B6 and high affinities (εEE = εEM = 0.8)
adsorb to the membrane forming a circular domain that shows small shape fluctuations,
indicating a significant line tension (see Figure 7 and Supplementary Video S4). The upper
panel of Figure 10 (and Supplementary Video S6) shows that the equilibrium state of a
system containing 396 IDPs of the type B8 and 396/1982 minority and majority phase lipids,
respectively, also contained a single domain, but it contained small patches of the majority
lipid and its non-circular shape indicated a lower line tension. On further increasing the
IDP backbone length to B16 (lower panel of Figure 10 and Supplementary Video S7), we
found that the conformationally-fluctuating IDPs bridged multiple, small lipid clusters,
but no domain was formed. This simulation contained 296 IDPs and 395/1975 minority
and majority phase lipids, respectively, to reduce the crowding effect of the longer IDPs.
We hypothesize that the domain formed by short IDPs is broken up by the conformational
entropy of the longer IDP backbones. Previous work has shown that B16 IDPs assemble into
a structured network when they phase separate in the bulk solvent with a spatial structure
whose length scale is selected by the length of the IDPs [55]. When these associated IDPs
adsorb to the minority lipid headgroups, they maintain this structure which keeps the
adsorbed minority lipids farther apart and unable to form a single domain.
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3.4. Clustering of Minority Lipids by IDP–Linker Attraction

IDPs are over-represented in cellular signaling and regulatory pathways [63], and
are involved in clustering of transmembrane receptors [32]. The cytoplasmic domain of
transmembrane receptors plays an important role in their phase separation. One example
is the activation of T cell receptors in the immune system, which has been reconstituted
in model membranes and leads to formation of a droplet of IDPs associating with the
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membrane-bound receptors [34]. In addition, the phase separation of IDPs in neurons
localizes receptors in the postsynaptic density and vesicles in the pre-synaptic zone [64,65].

To explore the ability of phase-separating IDPs to drive lipid domain formation via
binding to a flexible linker, we attached a hydrophilic linker to the minority lipid headgroup
and placed several sticky domains along it that are attracted to the IDP endcaps. The
addition of the linkers introduces (at least) an additional three parameters: the number and
affinity of the sticky domains, and their separation along the linker. For simplicity, we used
a linear sequence of four sticky domains (of four S beads each) separated by inert regions
(of four L beads each). The inert and sticky linker domains are hydrophilic and have no
net attraction. We defined the dimensionless strength of the attraction between the IDP
endcaps and the sticky domains (εES) similarly to the endcaps, but used the linker–linker
sticky domain conservative parameter as the baseline: εES = (aSS − aES)/aSS. To avoid
artifacts of the linkers prematurely clustering due to their initial configuration, we set
the endcap–linker interaction to εES = 0 (aSS = aES = 30), and equilibrated the system
for 250,000 time steps allowing the minority lipids to diffuse freely across the membrane.
Then the endcap self-attraction and endcap–linker attraction were set to a strong value,
εEE = εES = 0.83. Figure 11 shows the effects of 9 linker–lipids present in the membrane.
As the IDPs phase separated, they bound to the linkers and slowly merged into a large
droplet that drew the minority lipid/linkers into a domain (Figure 11, top panel, and
Supplementary Video S8.
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The above results were generated using the OSPREY-DPD code in a simulation box of
size 40 × 40 × 48 (d0)3. In Figure 11 (and Supplementary Video S9), we compare the case
of LLPS-driven domain formation from Figure 7 with those generated using the POETS-
DPD code in the larger simulation box 100 × 100 × 48 (d0)3. The upper panel shows the
equilibrium state in the small simulation box. We found that as few as 7 linker–lipids can
bind a droplet of 395 IDPs whose size is much larger than the clustered linkers. Two linkers
flip-flopped from the upper leaflet as a consequence of the initial state and were able to
bind sufficient IDPs to form a second domain visible in the lower left (and top left as it
is connected across the periodic boundaries). The middle and lower panels of Figure 11
show two views of the equivalent simulation executed with POETS-DPD that contains a
membrane that is 100 nm in linear dimension and contains 1260 IDPs and 2520 linker–lipids.
The same clustering of the larger number of IDPs to the larger number of linker–lipids
results in a similar droplet bound to the membrane (cp. Supplementary Videos S8 and S9).

4. Discussion

The increasing number of biomolecular condensates discovered in cells and the ubiq-
uity of membrane-bound organelles suggests that interactions between them are likely to be
important for cellular physiology. They also provide an interesting conceptual system for
exploring how the two-dimensional nature of a membrane interacts with three-dimensional
droplets. An example is provided by the phase separation of multivalent IDPs coupled
to transmembrane signaling proteins in immune cell signaling [11,35]. We used coarse-
grained molecular simulations to explore the morphologies adopted by a dilute phase
of IDPs near a two-component lipid membrane. The high computational cost of such
simulations drove this collaboration between biophysicists and the developers of novel
computer hardware to explore how coarse-grained simulations on much larger scales can
be accelerated and yet consume less electricity.

Our biological results are summarized in the morphology diagram in Figure 8, where
we explored the relationship between the molecular properties of the constituent molecules
and their equilibrium morphological phase behavior. Two non-trivial outcomes were
observed. First, if the IDP endcaps were more strongly attracted to the minority phase lipid
headgroups than to each other, they wet the membrane. If the length of the IDPs is short,
this drove the minority lipids into a single large domain, while longer IDPs adsorbed via
multiple, small, discrete clusters. When the IDP self-interaction and their interaction with
the minority lipid headgroup (or with sticky linkers attached to the headgroup) were both
sufficiently large, bulk LLPS occurred and drove formation of a single membrane domain.

Most of the preceding results were obtained from small systems with around 2400 lipids
in the membrane and several hundred IDPs, comprising 230,000 particles in total. Each
simulation required 14 cpu-days on a single core of a Ryzen Threadripper 3970X 4.5 GHz
desktop machine. It is tedious and unfeasible to carry out hundreds of these simulations
to explore exhaustively the parameter space of such complex models. In addition, the
~70 simulations we performed consumed an environmentally-unsustainable amount of
electricity. We therefore performed some larger simulations in a box size 100 × 100 × 48
(d0)3 on a novel computer hardware called POETS that drastically reduces the wall clock
time of our DPD simulations. The larger system contains 14,600 lipids and 1260 IDPs,
comprising 1,400,000 particles in total, but requires only 3 days to run the same number of
time-steps as the smaller case.

The research goal of our collaboration of biophysicists and computer engineers is to
ensure that the new POETS algorithms and hardware agree with the established DPD code-
base (for which many published results exist); that they can handle real-world problems
that practitioners want to solve; and that they are highly scalable. Initially, we focused on
matching the performance of single-node systems such as shared-memory multi-core CPUs
and individual GPUs.

Providing direct comparisons between disparate hardware/software systems is very
difficult. For example, it is often unclear how much systems actually cost (buying 1 unit



Membranes 2022, 12, 17 16 of 20

is different from buying 1000), what their power consumption is (should cooling costs
be included?), and whether computations are equivalent (is single-precision the same as
double-precision?). Table 2 shows indicative metrics for how different systems behave
in practice, based on published figures and (where possible) our own experiments. We
characterized them in terms of one compute-node, where a node is a multi-core CPU, GPU
plus support CPU, or an FPGA card for POETS, with power consumption quoted per node.
The performance was measured in total bead-steps per second across all nodes, which is
simply the total number of beads multiplied by the total number of simulation time steps,
divided by the execution time. CPU figures are based on our own measurements, while
GPU figures are courtesy of Seaton [66].

Table 2. Indicative performance of distinct compute platforms. Year: year hardware platform was intro-
duced; Watts: power consumption of one node under load; Nodes: # compute nodes; Perf: performance
in millions of bead-steps per second; Perf/Watt: performance per watt of electricity consumed.

System Year Software Watts Nodes Perf/106 Perf/Watt

CPUx1 2020 Osprey-DPD 250 1 0.5 2000

CPUx32 2020 LAMMPS 500 1 19.0 38,000

GPUx1 2016 DL-MESO 400 1 23.7 59,195

GPUx8 2016 DL-MESO 400 32 285.7 22,321

POETS Gen1 2011 POETS-DPD 200 48 24.0 2500

POETS Gen2 2022 POETS-DPD 250 48 360.0 30,000

Target parameters for next generation POETS system:

POETS Gen3 2025 POETS-DPD 250 48 3600.0 300,000

The figures for “POETS Gen1” are the performance attained in this work, which
is the measured performance of the hardware performing the large-scale simulations
described in this paper. We clearly exceeded the performance of the single-core Osprey-
DPD simulator used for the parameter exploration, which is our baseline comparison. It
is also slightly faster than a high-performance 32-core machine in our HPC cluster when
using multi-core LAMMPS, and about the same performance as a single high-performance
GPU. However, we can see that the performance per watt was relatively weak—similar to
a single-threaded implementation running on a CPU. This is a consequence of two effects:
First, the hardware we used is the first generation, which is based on old FPGAs from 2011;
second, we have so far focused on correctness and useability, and have spent little time on
performance optimization.

Overall, we achieved the research goals of the collaboration in producing a new
hardware system and algorithms that:

- Produce reliable DPD results (agree with published DPD implementation) [53];
- Are useful for practitioners;
- Are competitive in performance with existing single-node systems.

We are currently assembling the second generation of POETS hardware (POETS Gen2),
which is substantially more powerful as it is built on more recent FPGAs. This increases the
number of cores by a factor of 10, and the floating-point performance per core by a factor
of 4, so we have included in Table 2 estimated figures for the POETS-DPD implementation
running on this new hardware. At this point, the performance and efficiency start to become
competitive with multi-GPU systems, even without additional tuning and algorithmic
optimizations. For example, we have already found that dynamic load-balancing within
the POETS hardware dramatically improves simulation rate.

Looking further ahead, we are actively exploring new algorithms and optimizations
which substantially improve the performance per FPGA node. In particular, adding custom
instructions designed to support DPD calculations will reduce the number of instructions
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per bead interaction by a factor of 10. We included tentative estimates for the eventual
performance we are targeting using the hardware currently being assembled, based on
reasonable extrapolations. Clearly more research is needed, and this level of performance
is an aspirational goal, but having demonstrated that the basic idea works and is useful we
have confidence that this target is worth pursuing.

5. Conclusions

We live in interesting times: The power of computer systems is increasing year-by-year,
bringing biological fidelity at increasing length scales and ever longer time periods (almost)
within our grasp. Existing technologies such as multi-core, MPI, and GPUs provide one
way of scaling to larger simulations, but it is increasingly important to reduce the financial
and environmental costs of the simulations. Exotic architectures with custom hardware are
another way, but it is unclear whether they work for real-world problems, or even if they
give the correct results.

The principal goal of this paper was to identify the equilibrium morphologies of
a model of phase separating proteins near a two-component membrane using coarse-
grained simulations. But a secondary goal was to demonstrate how biophysical simulation
needs can drive inter-disciplinary research that yields faster and cheaper simulations. By
embedding the development of a new hardware simulation platform into the scientific
process, we create a feedback loop between the computational modeling pull and the
computer technology push that ensures the hardware advances work in practice—not just
in theory. The results presented in this paper were generated on distinct compute platforms
(Single core: Ryzon ThreadRipper 3970X; 4.5 GHz x86 32-core desktop; POETS machine:
49000 RISC-V threads): Each platform (running different codebases) provides consistent
results, which is an important and often overlooked aspect of simulation-based research.

Our final aim was to illuminate the path towards using event-based computing to
extend computational biophysics into more realistic arenas of membranes in health and
disease. Extensions to our work could follow several interesting routes. The assumption of
ideal mixing of the lipid species in the membrane could be relaxed to explore the converse
effect of domain formation on the bulk phase separation. The model IDPs could also be
more closely modeled on real proteins by adding multiple, punctate binding sites, or a
mixture of IDPs could be included. However, increasing the biological fidelity creates more
complex models with more parameters, making a systematic exploration of their behaviour
challenging on conventional architectures. The POETs computer framework introduced
here accelerates DPD simulations sufficiently that the exploration of high-dimensional
parameter space models is feasible while simultaneously reducing the energy consumed.
As simulations are increasingly used to augment wet-lab experiments, this will become an
increasingly important route to sustainable science.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/membranes12010017/s1, Video S1: Dispersed B6 IDPs and well-mixed membrane (εEE =

εEM = 0), Video S2: Bulk LLPS of B6 IDPs and well-mixed membrane (εEE = 0.68, εEM = 0),
Video S3: Wetting of membrane by B6 IDPs drives domain formation (εEE = 0, εEM = 0.8), Video S4:
LLPS of B6 IDPs drives domain formation (εEE = εEM = 0.8), Video S5: Reversible LLPS and domain
formation of B6 IDPs (εEE = 0.68, εEM = 0.8), Video S6: LLPS of B8 IDPs creates patchy domains
(εEE = εEM = 0.8), Video S7: LLPS of B16 IDPs creates small lipid clusters (εEE = εEM = 0.8),
Video S8: LLPS of B8 IDPs and linker binding drives domain formation (εEE = εES = 0.83), Video S9:
LLPS of B8 IDPs and linker binding drives domain formation in (100 nm)3 box (εEE = εES = 0.83).
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45. Li, L.; Hu, J.; Shi, X.; Różycki, B.; Song, F. Interplay between cooperativity of intercellular receptor–ligand binding and coalescence

of nanoscale lipid clusters in adhering membranes. Soft Matter 2021, 17, 1912–1920. [CrossRef] [PubMed]
46. Pezeshkian, W.; Marrink, S.J. Simulating realistic membrane shapes. Curr. Opin. Cell Biol. 2021, 71, 103–111. [CrossRef]
47. Enkavi, G.; Javanainen, M.; Kulig, W.; Róg, T.; Vattulainen, I. Multiscale Simulations of Biological Membranes: The Challenge To

Understand Biological Phenomena in a Living Substance. Chem. Rev. 2019, 119, 5607–5774. [CrossRef] [PubMed]
48. Pezeshkian, W.; König, M.; Wassenaar, T.A.; Marrink, S.J. Backmapping triangulated surfaces to coarse-grained membrane

models. Nat. Commun. 2020, 11, 2296. [CrossRef] [PubMed]
49. Yu, A.; Pak, A.J.; He, P.; Monje-Galvan, V.; Casalino, L.; Gaieb, Z.; Dommer, A.C.; Amaro, R.E.; Voth, G.A. A multiscale

coarse-grained model of the SARS-CoV-2 virion. Biophys. J. 2021, 120, 1097–1104. [CrossRef]
50. Zimmerman, M.I.; Porter, J.R.; Ward, M.D.; Singh, S.; Vithani, N.; Meller, A.; Mallimadugula, U.L.; Kuhn, C.E.; Borowsky, J.H.;

Wiewiora, R.P. SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome.
Nat. Chem. 2021, 13, 651–659. [CrossRef]

51. Karniadakis, G.E.; Kirby, R.M.I. Parallel Scientific Computing in C++ and MPI; Cambridge University Press: Cambridge, UK, 2003.
52. Naylor, M.; Moore, S.W.; Thomas, D. Tinsel: A Manythread Overlay for FPGA Clusters. In Proceedings of the 29th International

Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain, 8–12 September 2019; pp. 375–383.
53. Shillcock, J.C. OSPREY-DPD. Open Source Polymer Research Engine—Dissipative Particle Dynamics. 2020. Available online:

https://github.com/Osprey-DPD/osprey-dpd (accessed on 18 December 2021).
54. Beaumont, J.R.; Brown, A.D.; Thomas, D.B.; Shillcock, J.C.; Naylor, M.F.; Bragg, G.M.; Vousden, M.L.; Moore, S.W.; Fleming, S.T.

An event-driven approach to Dissipative Particle Dynamics. ACM Trans. Parallel Comput. (not published). 2021.

http://doi.org/10.1038/s41557-020-0465-9
http://doi.org/10.1002/bies.201600042
http://www.ncbi.nlm.nih.gov/pubmed/27554449
http://doi.org/10.1016/j.ccell.2020.12.003
http://doi.org/10.1111/tra.12704
http://www.ncbi.nlm.nih.gov/pubmed/31606941
http://doi.org/10.1111/febs.15765
http://www.ncbi.nlm.nih.gov/pubmed/33583140
http://doi.org/10.3390/app11031288
http://www.ncbi.nlm.nih.gov/pubmed/34327010
http://doi.org/10.1083/jcb.202103175
http://doi.org/10.1016/j.molcel.2019.09.016
http://doi.org/10.7554/eLife.04123
http://doi.org/10.1016/j.ceb.2020.12.006
http://www.ncbi.nlm.nih.gov/pubmed/33461072
http://doi.org/10.1126/science.aaf8179
http://www.ncbi.nlm.nih.gov/pubmed/27126023
http://doi.org/10.1126/science.aad9964
http://doi.org/10.1016/j.sbi.2016.08.001
http://www.ncbi.nlm.nih.gov/pubmed/27552079
http://doi.org/10.1016/j.bpj.2020.09.017
http://www.ncbi.nlm.nih.gov/pubmed/33080222
http://doi.org/10.1126/sciadv.abf9000
http://www.ncbi.nlm.nih.gov/pubmed/34049872
http://doi.org/10.1209/0295-5075/19/3/001
http://doi.org/10.1209/0295-5075/30/4/001
http://doi.org/10.1063/1.474784
http://doi.org/10.1063/1.1498463
http://doi.org/10.1103/PhysRevLett.93.198105
http://doi.org/10.1063/1.4979514
http://www.ncbi.nlm.nih.gov/pubmed/28433024
http://doi.org/10.1039/C8SM00044A
http://doi.org/10.1039/D0SM01904F
http://www.ncbi.nlm.nih.gov/pubmed/33416062
http://doi.org/10.1016/j.ceb.2021.02.009
http://doi.org/10.1021/acs.chemrev.8b00538
http://www.ncbi.nlm.nih.gov/pubmed/30859819
http://doi.org/10.1038/s41467-020-16094-y
http://www.ncbi.nlm.nih.gov/pubmed/32385270
http://doi.org/10.1016/j.bpj.2020.10.048
http://doi.org/10.1038/s41557-021-00707-0
https://github.com/Osprey-DPD/osprey-dpd


Membranes 2022, 12, 17 20 of 20

55. Shillcock, J.C.; Brochut, M.; Chénais, E.; Ipsen, J.H. Phase behaviour and structure of a model biomolecular condensate. Soft
Matter. 2020, 16, 6413–6423. [CrossRef]

56. Venturoli, M.; Sperotto, M.M.; Kranenburg, M.; Smit, B. Mesoscopic Models of Biological Membranes. Phys. Rep. 2006, 437, 1–54.
[CrossRef]

57. Laradji, M.; Sunil Kumar, P.B. Domain growth, budding, and fission in phase-separating self-assembled fluid bilayers. J. Chem.
Phys. 2005, 123, 224902. [CrossRef] [PubMed]

58. Illya, G.; Lipowsky, R.; Shillcock, J.C. Two-component membrane material properties and domain formation from dissipative
particle dynamics. J. Chem. Phys. 2006, 125, 114710. [CrossRef] [PubMed]

59. Smith, K.A.; Jasnow, D.; Balazs, A.C. Designing synthetic vesicles that engulf nanoscopic particles. J. Chem. Phys. 2007, 127,
084703. [CrossRef] [PubMed]

60. Yang, K.; Ma, Y.-Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat.
Nanotechnol. 2010, 5, 579–583. [CrossRef] [PubMed]

61. Grafmuller, A.; Shillcock, J.; Lipowsky, R. The fusion of membranes and vesicles: Pathway and energy barriers from dissipative
particle dynamics. Biophys. J. 2009, 96, 2658–2675. [CrossRef]

62. Brown, A.; Vousden, M.; Rast, A.; Bragg, G.M.; Thomas, D.; Beauont, J.; Naylor, M.; Mokhov, A. POETS: Distributed event-based
computing—Scaling behaviour. In Proceedings of the International Conference on Parallel Computing, Prague, Czech Republic,
10–13 September 2019.

63. Oldfield, C.J.; Dunker, A.K. Intrinsically Disordered Proteins and Intrinsically Disordered Protein Regions. Annu. Rev. Biochem.
2014, 83, 553–584. [CrossRef] [PubMed]

64. Zeng, M.; Chen, X.; Guan, D.; Xu, J.; Wu, H.; Tong, P.; Zhang, M. Reconstituted Postsynaptic Density as a Molecular Patform for
Understanding Synapse Formation and Plasticity. Cell 2018, 174, 1172–1187. [CrossRef]

65. Wu, X.; Cai, Q.; Shen, Z.; Chen, X.; Zeng, M.; Du, S.; Zhang, M. RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates
via Phase Separation. Mol. Cell 2019, 73, 971–984. [CrossRef]

66. Castagna, J.; Guo, X.; Seaton, M.; O’Cais, A. Towards extreme scale dissipative particle dynamics simulations using multiple
GPGPUs. Comput. Phys. Commun. 2020, 251, 107159. [CrossRef]

67. Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol Graphics. 1996, 14, 33–38. [CrossRef]

http://doi.org/10.1039/D0SM00813C
http://doi.org/10.1016/j.physrep.2006.07.006
http://doi.org/10.1063/1.2102894
http://www.ncbi.nlm.nih.gov/pubmed/16375505
http://doi.org/10.1063/1.2353114
http://www.ncbi.nlm.nih.gov/pubmed/16999504
http://doi.org/10.1063/1.2766953
http://www.ncbi.nlm.nih.gov/pubmed/17764280
http://doi.org/10.1038/nnano.2010.141
http://www.ncbi.nlm.nih.gov/pubmed/20657599
http://doi.org/10.1016/j.bpj.2008.11.073
http://doi.org/10.1146/annurev-biochem-072711-164947
http://www.ncbi.nlm.nih.gov/pubmed/24606139
http://doi.org/10.1016/j.cell.2018.06.047
http://doi.org/10.1016/j.molcel.2018.12.007
http://doi.org/10.1016/j.cpc.2020.107159
http://doi.org/10.1016/0263-7855(96)00018-5

	Introduction 
	Materials and Methods 
	Dissipative Particle Dynamics Simulations 
	Massively Parallel Event-Based Simulations 

	Results 
	Influence of the IDP-Membrane Affinity on the Equilibrium Morphology 
	Reversible Coupling of Phase Separation and Domain Formation 
	Increasing IDP Length Results in Patchy Domains 
	Clustering of Minority Lipids by IDP–Linker Attraction 

	Discussion 
	Conclusions 
	References

