Determination of Glyphosate and AMPA in Food Samples Using Membrane Extraction Technique for Analytes Preconcentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Extraction Procedures
2.4. HPLC Analysis
2.5. Method Validation
3. Results and Discussion
3.1. Sample Pretreatment Step
3.2. Method Validation
3.3. Food Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Soucek, P. Xenobiotics. In Encyclopedia of Cancer; Schwab, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3964–3967. [Google Scholar]
- de Melo Tarouco, F.; de Godoi, F.G.A.; Velasques, R.R.; da Silveira Guerreiro, A.; Geihs, M.A.; da Rosa, C.E. Effects of the herbicide Roundup on the polychaeta Laeonereis acuta: Cholinesterases and oxidative stress. Ecotoxicol. Environ. Saf. 2017, 135, 259–266. [Google Scholar] [CrossRef]
- Studnik, H.; Liebsch, S.; Forlani, G.; Wieczorek, D.; Kafarski, P.; Lipok, J. Amino polyphosphonates—Chemical features and practical uses, environmental durability and biodegradation. New Biotechnol. 2015, 32, 1–6. [Google Scholar] [CrossRef]
- Firdous, S.; Iqbal, S.; Anwar, S. Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere 2020, 30, 618–627. [Google Scholar] [CrossRef]
- Grandcoin, A.; Piel, S.; Baurès, E. AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Res. 2017, 117, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Ndjeri, M.; Pensel, A.; Peulon, S.; Haldys, V.; Desmazières, B.; Chaussé, A. Degradation of glyphosate and AMPA (amino methylphosphonic acid) solutions by thin films of birnessite electrodeposited: A new design of material for remediation processes? Colloids Surf. A Physicochem. Eng. Asp. 2013, 435, 154–169. [Google Scholar] [CrossRef]
- Hao, C.; Morse, D.; Morra, F.; Zhao, X.; Yang, P.; Nunn, B. Direct aqueous determination of glyphosate and related compounds by liquid chromatography/tandem mass spectrometry using reversed-phase and weak anion-exchange mixed-mode column. J. Chromatogr. A 2011, 1218, 5638–5643. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, A.; Brown, G.G.; Sautter, K.D.; Ribas de Oliveira, C.M.; de Vasconcelos, E.C.; Niva, C.C.; Bartz, M.L.C.; Bedano, J.C. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Sci. Rep. 2016, 6, 19731. [Google Scholar] [CrossRef] [Green Version]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef]
- Defarge, N.; Takács, E.; Lozano, V.L.; Mesnage, R.; Spiroux de Vendômois, J.; Séralini, G.E.; Székács, A. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels. Int. J. Environ. Res. Public Health 2016, 13, 264. [Google Scholar] [CrossRef] [Green Version]
- Maddalon, A.; Galbiati, V.; Colosio, C.; Mandić-Rajčević, S.; Corsini, E. Glyphosate-based herbicides: Evidence of immune-endocrine alteration. Toxicology 2021, 459, 152851. [Google Scholar] [CrossRef] [PubMed]
- Costa Reis, L.T.; Sena de Souza, J.; Hirochi Herai, R.; Cunha, E.B.; Ribeiro Pereira Soares, J.; Santos El-Bachá, R.; Diogenes Amaral da Silva, V.; Aurelio Romano, M.; Marino Romano, R.; Izabel Chiamolera, M.; et al. Intergenerational thyroid hormone homeostasis imbalance in cerebellum of rats perinatally exposed to glyphosate-based herbicide. Environ. Toxicol. 2021, 36, 1031–1042. [Google Scholar] [CrossRef]
- Vicini, J.L.; Jensen, P.K.; Young, B.M.; Swarthout, J.T. Residues of glyphosate in food and dietary exposure. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5226–5257. [Google Scholar] [CrossRef]
- de Souza, A.P.F.; Ferreira, G.S.; Pagliarini, F.S.; Rodrigues, N.R. Exposure assessment of glyphosate residues in soy-based infant formulas from the Brazilian market. J. Consum. Prot. Food Saf. 2021, 16, 45–50. [Google Scholar] [CrossRef]
- Herrera López, S.; Scholten, J.; Kiedrowska, B.; de Kok, A. Method validation and application of a selective multiresidue analysis of highly polar pesticides in food matrices using hydrophilic interaction liquid chromatography and mass spectrometry. J. Chromatogr. A 2019, 1594, 93–104. [Google Scholar] [CrossRef]
- Kolakowski, B.M.; Miller, L.; Murray, A.; Leclair, A.; Bietlot, H.; van de Riet, J.M. Analysis of Glyphosate Residues in Foods from the Canadian Retail Markets between 2015 and 2017. J. Agric. Food Chem. 2020, 68, 5201–5211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dang, Y.; Lin, X.; An, K.; Li, J.; Zhang, M. Determination of glyphosate and glufosinate in corn using multi-walled carbon nanotubes followed by ultra high performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2020, 1619, 460939. [Google Scholar] [CrossRef]
- Santilio, A.; Pompili, C.; Giambenedetti, A. Determination of glyphosate residue in maize and rice using a fast and easy method involving liquid chromatography–mass spectrometry (LC/MS/MS). J. Environ. Sci. Health Part B 2019, 54, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.O.P.; Pinto, K.G.D.; Gama, L.A.d.; Ferreira, C.C.; Bhowmik, P.C.; Albertino, S.M.F. Physical Properties of Soil and Glyphosate Residue as a Function of Cassava Weed Management by Cover Crops in the Amazon Ecosystem. HortScience 2021, 56, 1053. [Google Scholar] [CrossRef]
- Hungerford, N.L.; Fletcher, M.T.; Tsai, H.H.; Hnatko, D.; Swann, L.J.; Kelly, C.L.; Anuj, S.R.; Tinggi, U.; Webber, D.C.; Were, S.T.; et al. Occurrence of environmental contaminants (pesticides, herbicides, PAHs) in Australian/Queensland Apis mellifera honey. Food Addit. Contam. Part B 2021, 14, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Masini, M.R.; Pereira, E.A.O.; Abate, G.; Masini, J.C. Solid-phase extraction of glyphosate in the analyses of environmental, plant, and food samples. Chromatographia 2019, 82, 1121–1138. [Google Scholar] [CrossRef]
- Khrolenko, M.V.; Wieczorek, P.P. Determination of glyphosate and its metabolite aminomethylphosphonic acid in fruit juices using supported-liquid membrane preconcentration method with high-performance liquid chromatography and UV detection after derivatization with p-toluenesulphonyl chloride. J. Chromatogr. A 2005, 1093, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Pont, N.; Salvadó, V.; Fontàs, C. Applicability of a Supported Liquid Membrane in the Enrichment and Determination of Cadmium from Complex Aqueous Samples. Membranes 2018, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Dżygiel, P.; Wieczorek, P. Extraction of glyphosate by a supported liquid membrane technique. J. Chromatogr. A 2000, 889, 93–98. [Google Scholar] [CrossRef]
- Dżygiel, P.; Wieczorek, P. Supported liquid membrane extraction of glyphosate metabolites. J. Sep. Sci. 2001, 24, 561–566. [Google Scholar] [CrossRef]
- Kataoka, H.; Ryu, S.; Sakiyama, N.; Makita, M. Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. J. Chromatogr. A 1996, 726, 253–258. [Google Scholar] [CrossRef]
- Hsu, C.C.; Whang, C.W. Microscale solid phase extraction of glyphosate and aminomethylphosphonic acid in water and guava fruit extract using alumina-coated iron oxide nanoparticles followed by capillary electrophoresis and electrochemiluminescence detection. J. Chromatogr. A 2009, 1216, 8575–8580. [Google Scholar] [CrossRef]
- Chiu, H.Y.; Lin, Z.Y.; Tu, H.L.; Whang, C.W. Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. J. Chromatogr. A 2008, 1177, 195–198. [Google Scholar] [CrossRef]
- Martins-Júnior, H.A.; Lebre, D.T.; Wang, A.Y.; Pires, M.A.F.; Bustillos, O.V. An alternative and fast method for determination of glyphosate and aminomethylphosphonic acid (AMPA) residues in soybean using liquid chromatography coupled with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1029–1034. [Google Scholar] [CrossRef]
- Thompson, T.S.; van den Heever, J.P.; Limanowka, R.E. Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A 2019, 36, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-López, J.; Llorent-Martínez, E.J.; Ortega-Barrales, P.; Ruiz-Medina, A. Multicommutated Flow System for the Determination of Glyphosate Based on Its Quenching Effect on CdTe-Quantum Dots Fluorescence. Food Anal. Methods 2018, 11, 1840–1848. [Google Scholar] [CrossRef]
Type of Sample | Nutritional Factor 100 g of Product [g] | ||||
---|---|---|---|---|---|
Protein | Carbohydrates | Fats | Cellulose | Sodium | |
Walnut | 5.6 | 16.6 | 16.0 | <0.5 | 0.030 |
Soybean | 34.2 | 19.6 | 17.0 | 15.7 | 0.001 |
Buckwheat | 14.1 | 72.4 | 1.4 | - | - |
Barley | 10.6 | 66.0 | 2.1 | 9.1 | 0.001 |
Lentil | 24.4 | 45.7 | 1.9 | 8.9 | 0.012 |
Rice flour | 7.9 | 79.0 | 0.9 | 0.7 | 0.001 |
Parameter | SLM |
---|---|
Membrane phase | 20% Aliquat 336 in DHE |
Donor phase | Sample volume 100 mL and pH 11 |
Acceptor phase | 2 mol L−1 NaCl, volume 5 mL |
Donor phase flow rate | 0.2 mL/min. |
Acceptor phase flow rate | 0.2 mL/min. |
Extraction time | 24 h |
Matrix | R2 | LODs and LOQs | RSD [%] (n = 6) | HPLC—PDA Method Precision | RSD [%] Beetwen Days |
---|---|---|---|---|---|
RICE FLOUR | >0.999 | LODs: 0.002 µg g−1 for NPG 0.210 µg g−1 for AMPA LOQs: 0.006 µg g−1 for NPG 0.630 µg g−1 for AMPA | ≤6% | <5% for peak area <0.2% for retention time | 0.5–4% |
Sample Matrix | Sample Pretreatment Step | Analysis | LOD/LOQ | Ref. |
---|---|---|---|---|
carrot | LLE | GC-FPD, derivatization with N-isoPOC | LOD NPG = 12 pg LOD AMPA = 8 pg | [28] |
guava fruit | SPE sorbent with Fe2O3—Al2O3 nanoparticles, MIP) | CE—ECL | LOD NPG = 0.01 ug g−1 | [29] |
soybean | UAE solvent extraction | CE—ECL | LOD NPG = 0.6 ug g−1 | [30] |
soybean | LLE | LC/ESI—MS/MS | LOD NPG = 0.09 ug g−1 LOD AMPA = 0.1 ug g−1 | [31] |
honey | SPE with Oasis HLB extraction cartridge | LC-MS/MS | LOD NPG = 0.001 ug g−1 LOD AMPA = 0.001 ug g−1 | [32] |
amaranth, barley, oat, and quinoa | QuEChERS extraction method | Multicommutated Flow System Based on Its Quenching Effect on CdTe-Quantum Dots Fluorescence | LOD NPG = 0.5 ug mL−1 | [33] |
walnut, soybean, buckwheat, barley, lentil, rice flour | UAE-SLM ,Protein precipitation | HPLC—PDA | LOD NPG = 0.002 ug g−1 LOD AMPA = 0.210 ug g−1 | *** |
Type of Sample | NPG and AMPA Analysis of Tested Food Samples, n = 6 | |||
---|---|---|---|---|
Recovery NPG [%] | Recovery AMPA [%] | Determined Content of NPG [µg/kg] | Determined Content of AMPA [µg/kg] | |
Walnut | 32.1 ± 0.7 | 28.8 ± 1.0 | 7.8 ± 0.2 | <LOD |
Soybean | 48.7 ± 1.3 | 35.1 ± 6.0 | 4.7 ± 0.1 | <LOD |
Buckwheat | 69.0 ± 0.5 | 49.0 ± 2.1 | < LOD | <LOD |
Barley | 46.8 ± 1.3 | 37.4 ± 1.5 | 5.6 ± 0.2 | <LOD |
Lentil | 67.1 ± 3.6 | 36.5 ± 5.8 | 11.0 ± 0.6 | <LOD |
Rice flour | 61.9 ± 0.8 | 55.9 ± 4.9 | <LOD | <LOD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gębura, K.; Wieczorek, P.P.; Poliwoda, A. Determination of Glyphosate and AMPA in Food Samples Using Membrane Extraction Technique for Analytes Preconcentration. Membranes 2022, 12, 20. https://doi.org/10.3390/membranes12010020
Gębura K, Wieczorek PP, Poliwoda A. Determination of Glyphosate and AMPA in Food Samples Using Membrane Extraction Technique for Analytes Preconcentration. Membranes. 2022; 12(1):20. https://doi.org/10.3390/membranes12010020
Chicago/Turabian StyleGębura, Katarzyna, Piotr P. Wieczorek, and Anna Poliwoda. 2022. "Determination of Glyphosate and AMPA in Food Samples Using Membrane Extraction Technique for Analytes Preconcentration" Membranes 12, no. 1: 20. https://doi.org/10.3390/membranes12010020
APA StyleGębura, K., Wieczorek, P. P., & Poliwoda, A. (2022). Determination of Glyphosate and AMPA in Food Samples Using Membrane Extraction Technique for Analytes Preconcentration. Membranes, 12(1), 20. https://doi.org/10.3390/membranes12010020