Influence of Potassium Ions on Act of Amphotericin B to the DPPC/Chol Mixed Monolayer at Different Surface Pressures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Langmuir Monolayers
2.3. Langmuir-Blodgett Film and Atomic Force Microscopy Observation
3. Results
3.1. The Surface Pressure–Mean Molecular Area (π-A) Isotherms and the Elastic Modulus
3.2. The Limiting Molecular Area and the Mean Molecular Area Increment
3.3. The Surface Pressure–Time (π-t) Curves
3.4. The AFM Analysis
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Reinhart, K.; Bauer, M.; Riedemann, N.C.; Hartog, C.S. New Approaches to Sepsis: Molecular Diagnostics and Biomarkers. Clin. Microbiol. Rev. 2012, 25, 609–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyedmousavi, S.; Rafati, H.; Ilkit, M.; Tolooe, A.; Hedayati, M.T.; Verweij, P. Systemic Antifungal Agents: Current Status and Projected Future Developments. Methods Mol. Biol. 2016, 1508, 107–139. [Google Scholar] [CrossRef]
- Wang, J.-L.; Chang, C.-H.; Young-Xu, Y.; Chan, K. Systematic Review and Meta-Analysis of the Tolerability and Hepatotoxicity of Antifungals in Empirical and Definitive Therapy for Invasive Fungal Infection. Antimicrob. Agents Chemother. 2010, 54, 2409–2419. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Espinel-Ingroff, A.; Canton, E.; Castanheira, M.; Cuenca-Estrella, M.; Diekema, D.; Fothergill, A.; Fuller, J.; Ghannoum, M.; Jones, R.N.; et al. Wild-Type MIC Distributions and Epidemiological Cutoff Values for Amphotericin B, Flucytosine, and Itraconazole and Candida spp. as Determined by CLSI Broth Microdilution. J. Clin. Microbiol. 2012, 50, 2040–2046. [Google Scholar] [CrossRef] [Green Version]
- Fanos, V.; Cataldi, L. Renal Transport of Antibiotics and Nephrotoxicity: A Review. J. Chemother. 2001, 13, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Wong-Beringer, A.; Jacobs, R.A.; Guglielmo, B.J. Lipid Formulations of Amphotericin B: Clinical Efficacy and Toxicities. Clin. Infect. Dis. 1998, 27, 603–618. [Google Scholar] [CrossRef]
- Laniado-Laborín, R.; Cabrales-Vargas, M.N. Amphotericin B: Side effects and toxicity. Rev. Iberoam. Micol. 2009, 26, 223–227. [Google Scholar] [CrossRef]
- Baek, S.; Kim, S.-M.; Lee, S.-A.; Rhim, B.-Y.; Eo, S.-K.; Kim, K. The Cholesterol-Binding Antibiotic Nystatin Induces Expression of Macrophage Inflammatory Protein-1 in Macrophages. Biomol. Ther. 2013, 21, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, P.D.; Pearson, M.M.; Cleary, J.D.; Sullivan, D.C.; Chapman, S.W. Differential expression of genes encoding immunomodulatory proteins in response to amphotericin B in human mononuclear cells identified by cDNA microarray analysis. J. Antimicrob. Chemother. 2002, 50, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.; Choi, J.-W.; Park, H.-R.; Kim, I.; Kim, H.S. Amphotericin B, an Anti-Fungal Medication, Directly Increases the Cytotoxicity of NK Cells. Int. J. Mol. Sci. 2017, 18, 1262. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, D.; Yu, S.; Chen, L.; Wei, D.; Shen, C.; Zhuang, L.; Wang, Q.; Xu, X.; Tong, Y. Amphotericin B suppresses M2 phenotypes and B7-H1 expression in macrophages to prevent Raji cell proliferation. BMC Cancer 2018, 18, 467. [Google Scholar] [CrossRef] [Green Version]
- Ermishkin, L.N.; Kasumov, K.M.; Potzeluyev, V.M. Single ionic channels induced in lipid bilayers by polyene antibiotics amphotericin B and nystatine. Nature 1976, 262, 698–699. [Google Scholar] [CrossRef] [PubMed]
- García-Barbazán, I.; Zaragoza, Ó. Polyenes and Amphotericin B. Encycl. Mycol. 2021, 1, 421–426. [Google Scholar]
- Kotler-Brajtburg, J.; Price, H.D.; Medoff, G.; Schlessinger, D.; Kobayashi, G.S. Molecular Basis for the Selective Toxicity of Amphotericin B for Yeast and Filipin for Animal Cells. Antimicrob. Agents Chemother. 1974, 5, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanki, K.; Prajapati, R.; Sangamwar, A.T.; Jain, S. Long chain fatty acid conjugation remarkably decreases the aggregation induced toxicity of Amphotericin B. Int. J. Pharm. 2018, 544, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Starzyk, J.; Gruszecki, M.; Tutaj, K.; Luchowski, R.; Szlazak, R.; Wasko, P.; Grudzinski, W.; Czub, J.; Gruszecki, W.I. Self-Association of Amphotericin B: Spontaneous Formation of Molecular Structures Responsible for the Toxic Side Effects of the Antibiotic. J. Phys. Chem. B 2014, 118, 13821–13832. [Google Scholar] [CrossRef]
- Silberstein, A. Conformational Analysis of Amphotericin B—Cholesterol Channel Complex. J. Membr. Biol. 1998, 162, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Saka, Y.; Mita, T. Interaction of Amphotericin B with Cholesterol in Monolayers, Aqueous Solutions, and Phospholipid Bilayers. J. Biochem. 1998, 123, 798–805. [Google Scholar] [CrossRef]
- Seoane, R.; Minones, J.; Conde, O.; Iribarnegaray, E.; Casas, M. Interactions between amphotericin B and sterols in monolayers. Mixed films of amphotericin B/cholesterol. Langmuir 1999, 15, 5567–5573. [Google Scholar] [CrossRef]
- De Kruijff, B.; Demel, R. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim. Biophys. Acta (BBA) Biomembr. 1974, 339, 57–70. [Google Scholar] [CrossRef]
- Fournier, I.; Barwicz, J.; Auger, M.; Tancrède, P. The chain conformational order of ergosterol- or cholesterol-containing DPPC bilayers as modulated by Amphotericin B: A FTIR study. Chem. Phys. Lipids 2008, 151, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Dynarowicz-Łątka, P.; Seoane, R.; Miñones, J.; Velo, M. Study of penetration of amphotericin B into cholesterol or ergosterol containing dipalmitoyl phosphatidylcholine Langmuir monolayers. Colloids Surf. B Biointerfaces 2003, 27, 249–263. [Google Scholar] [CrossRef]
- Foglia, F.; Drake, A.; Terry, A.; Rogers, S.; Lawrence, M.; Barlow, D. Small-angle neutron scattering studies of the effects of amphotericin B on phospholipid and phospholipid–sterol membrane structure. Biochim. Biophys. Acta (BBA) Biomembr. 2011, 1808, 1574–1580. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, S.; Murata, M. Cholesterol markedly reduces ion permeability induced by membrane-bound amphotericin B. Biochim. Biophys. Acta (BBA) Biomembr. 2002, 1564, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Becucci, L.; Innocenti, M.; Bellandi, S.; Guidelli, R. Permeabilization of mercury-supported biomimetic membranes by amphotericin B and the role of calcium ions. Electrochim. Acta 2013, 112, 719–726. [Google Scholar] [CrossRef]
- Gagoś, M.; Arczewska, M. Influence of K+ and Na+ Ions on the Aggregation Processes of Antibiotic Amphotericin B: Electronic Absorption and FTIR Spectroscopic Studies. J. Phys. Chem. B 2011, 115, 3185–3192. [Google Scholar] [CrossRef] [PubMed]
- Gagoś, M.; Arczewska, M.; Gruszecki, W.I. Raman Spectroscopic Study of Aggregation Process of Antibiotic Amphotericin B Induced by H+, Na+, and K+ Ions. J. Phys. Chem. B 2011, 115, 5032–5036. [Google Scholar] [CrossRef]
- Arczewska, M.; Gagos, M. Molecular organization of antibiotic amphotericin B in dipalmitoylphosphatidylcholine monolayers induced by K+ and Na+ ions: The Langmuir technique study. Biochim. Et Biophys. Acta (BBA) -Biomembr. 2011, 1808, 2706–2713. [Google Scholar] [CrossRef] [Green Version]
- Brajtburg, J.; Bolard, J. Carrier effects on biological activity of amphotericin B. Clin. Microbiol. Rev. 1996, 9, 512–531. [Google Scholar] [CrossRef]
- Brajtburg, J.; Medoff, G.; Kobayashi, G.S.; Elberg, S. Influence of extracellular K+ or Mg2+ on the stages of the antifungal effects of amphotericin B and filipin. Antimicrob. Agents Chemother. 1980, 18, 593–597. [Google Scholar] [CrossRef] [Green Version]
- DeGorter, M.K.; Xia, C.Q.; Yang, J.J.; Kim, R.B. Drug Transporters in Drug Efficacy and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 249–273. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, Y.; Xi, D.; Rao, Z.; Sun, X.; Wu, X. Effect of high uric acid on the disposition of metformin: In vivo and in vitro studies. Biopharm. Drug Dispos. 2019, 40, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Ferrreira, J.V.N.; Grecco, S.D.S.; Lago, J.H.G.; Caseli, L. Ultrathin films of lipids to investigate the action of a flavonoid with cell membrane models. Mater. Sci. Eng. C 2015, 48, 112–117. [Google Scholar] [CrossRef]
- Pascholati, C.P.; Lopera, E.P.; Pavinatto, F.J.; Caseli, L.; Nobre, T.M.; Zaniquelli, M.E.; Viitala, T.; D’Silva, C.; Oliveira, O.N. The interaction of an antiparasitic peptide active against African Sleeping Sickness with cell membrane models. Colloids Surf. B Biointerfaces 2009, 74, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.E.; Caseli, L. The interaction of mefloquine hydrochloride with cell membrane models at the air–water interface is modulated by the monolayer lipid composition. J. Colloid Interface Sci. 2014, 431, 24–30. [Google Scholar] [CrossRef]
- Brockman, H. Lipid monolayers: Why use half a membrane to characterize protein-membrane interactions? Curr. Opin. Struct. Biol. 1999, 9, 438–443. [Google Scholar] [CrossRef]
- Nagamine, M.; Osial, M.; Widera-Kalinowska, J.; Jackowska, K.; Krysiński, P. Photosensitive Thin Films Based on Drop Cast and Langmuir-Blodgett Hydrophilic and Hydrophobic CdS Nanoparticles. Nanomaterials 2020, 10, 2437. [Google Scholar] [CrossRef]
- Nakahara, H.; Hagimori, M.; Mukai, T.; Shibata, O. Monolayers of a tetrazine-containing gemini amphiphile: Interplays with biomembrane lipids. Colloids Surf. B Biointerfaces 2018, 164, 1–10. [Google Scholar] [CrossRef]
- Wang, J.; Sun, R. Influence of alkaline phosphatase on phase state of the SM monolayers at the air-water interface. Colloids Surf. A: Physicochem. Eng. Asp. 2016, 489, 136–141. [Google Scholar] [CrossRef]
- Wnętrzak, A.; Chachaj-Brekiesz, A.; Kuś, K.; Filiczkowska, A.; Lipiec, E.; Kobierski, J.; Petelska, A.D.; Dynarowicz-Latka, P. 25-hydroxycholesterol interacts differently with lipids of the inner and outer membrane leaflet—The Langmuir monolayer study complemented with theoretical calculations. J. Steroid Biochem. Mol. Biol. 2021, 211, 105909. [Google Scholar] [CrossRef]
- González, C.M.; Pizarro-Guerra, G.; Droguett, F.; Sarabia, M. Artificial biomembrane based on DPPC—Investigation into phase transition and thermal behavior through ellipsometric techniques. Biochim. Biophys. Acta (BBA) Biomembr. 2015, 1848, 2295–2307. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Y.Y.; Veldhuizen, R.A.W.; Neumann, A.W.; Petersen, N.O.; Possmayer, F. Current perspectives in pulmonary surfactant—Inhibition, enhancement and evaluation. Biochim. Biophys. Acta (BBA) Biomembr. 2008, 1778, 1947–1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-T.; Kreutzberger, A.; Lee, J.; Kiessling, V.; Tamm, L.K. The role of cholesterol in membrane fusion. Chem. Phys. Lipids 2016, 199, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, G.C.M.; Pazin, W.M.; Morato, L.F.D.C.; Oliveira, O.N.; Constantino, C.J.L. Correlating mono- and bilayers of lipids to investigate the pronounced effects of steroid hormone 17α-ethynylestradiol on membrane models of DPPC/cholesterol. J. Mol. Liq. 2020, 311, 113324. [Google Scholar] [CrossRef]
- Wang, J.; Sun, R.; Li, J. Influence of K+, Na+ or Ca2+ ions on the interaction between AmB and saturated phospholipids by Langmuir technique. Chem. Res. Chin. Univ. 2016, 32, 242–247. [Google Scholar] [CrossRef]
- Lalgee, L.J.; Cox, L.; Fairman, R.A.; Grierson, L. DPPC monolayer response to non-spanning cobalt-cage metallosurfactants: Electrostatic complex formation. Chem. Phys. Lipids 2018, 213, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Shi, R.X.; Sun, R.G.; Hao, C.C.; Li, J.H.; Lu, X.L. Influence of amphotericin B on liquid crystal state of the Cholesterol/Dipalmitoylphosphatidylcholine monolayer in the presence of different metal cations. Chin. Phys. B 2016, 25, 090505. [Google Scholar] [CrossRef]
- Gong, K.; Feng, S.-S.; Go, M.L.; Soew, P.H. Effects of pH on the stability and compressibility of DPPC/cholesterol monolayers at the air–water interface. Colloids Surf. A Physicochem. Eng. Asp. 2002, 207, 113–125. [Google Scholar] [CrossRef]
- Guzmán, E.; Liggieri, L.; Santini, E.; Ferrari, M.; Ravera, F. Mixed DPPC–cholesterol Langmuir monolayers in presence of hydrophilic silica nanoparticles. Colloids Surf. B Biointerfaces 2013, 105, 284–293. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H. Interaction between polyene antifungal drug and saturated phospholipid monolayer regulated by calcium ions at the air-water interface. Colloids Surf. B Biointerfaces 2021, 207, 111998. [Google Scholar] [CrossRef]
- Davies, J.T.; Rideal, E.K. Interfacial Phenomena, 2nd ed.; Academic Press: New York, NY, USA, 1963; pp. 265–266. [Google Scholar]
- Panda, A.; Possmayer, F.; Petersen, N.; Nag, K.; Moulik, S. Physico-chemical studies on mixed oppositely charged surfactants: Their uses in the preparation of surfactant ion selective membrane and monolayer behavior at the air water interface. Colloids Surf. A Physicochem. Eng. Asp. 2005, 264, 106–113. [Google Scholar] [CrossRef]
- Gopal, A.; Lee, K.Y.C. Headgroup Percolation and Collapse of Condensed Langmuir Monolayers. J. Phys. Chem. B 2006, 110, 22079–22087. [Google Scholar] [CrossRef] [PubMed]
- Gzyl-Malcher, B.; Handzlik, J.; Klekowska, E. Interaction of prazosin with model membranes—A Langmuir monolayer study. Bioelectrochemistry 2012, 87, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Devterova, J.M.; Sokolov, M.E.; Buz’Ko, V.Y.; Repina, I.N.; Rudnov, P.S.; Panyushkin, V.T. Subphase pH effect on the limiting molecular area of amphiphilic β-diketones in Langmuir monolayers. Mendeleev Commun. 2020, 30, 505–506. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Hou, S. Effect of potassium ions at the different concentration on the interaction between AmB and the lipid monolayer containing cholesterol or ergosterol. Biochem. Biophys. Res. Commun. 2020, 521, 699–705. [Google Scholar] [CrossRef]
- Botet-Carreras, A.; Montero, M.T.; Domènech, Ò.; Borrell, J.H. Effect of cholesterol on monolayer structure of different acyl chained phospholipids. Colloids Surf. B Biointerfaces 2019, 174, 374–383. [Google Scholar] [CrossRef] [PubMed]
Concentration of K+ (mmol/L) | 15 mN/m | 30 mN/m | ||||
---|---|---|---|---|---|---|
0 | 14.62 ± 0.02 | 9.83 ± 0.02 | −4.79 ± 0.02 | 29.92 ± 0.02 | 29.45 ± 0.02 | −0.47 ± 0.02 |
5 | 13.88 ± 0.02 | 7.11 ± 0.02 | −6.77 ± 0.02 | 29.69 ± 0.02 | 29.27 ± 0.02 | −0.42 ± 0.02 |
10 | 13.53 ± 0.02 | 6.91 ± 0.02 | −6.62 ± 0.02 | 29.49 ± 0.02 | 29.21 ± 0.02 | −0.28 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J. Influence of Potassium Ions on Act of Amphotericin B to the DPPC/Chol Mixed Monolayer at Different Surface Pressures. Membranes 2022, 12, 84. https://doi.org/10.3390/membranes12010084
Wang J. Influence of Potassium Ions on Act of Amphotericin B to the DPPC/Chol Mixed Monolayer at Different Surface Pressures. Membranes. 2022; 12(1):84. https://doi.org/10.3390/membranes12010084
Chicago/Turabian StyleWang, Juan. 2022. "Influence of Potassium Ions on Act of Amphotericin B to the DPPC/Chol Mixed Monolayer at Different Surface Pressures" Membranes 12, no. 1: 84. https://doi.org/10.3390/membranes12010084
APA StyleWang, J. (2022). Influence of Potassium Ions on Act of Amphotericin B to the DPPC/Chol Mixed Monolayer at Different Surface Pressures. Membranes, 12(1), 84. https://doi.org/10.3390/membranes12010084