Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC
Abstract
:1. Introduction
2. Microstructure Reconstruction and Physical Properties Correction of CL
2.1. Sample Preparation
2.2. Nano-CT Imaging
2.3. Structural Characterizations of Reconstructed Model
2.4. Correction of Transport Parameters in CL
3. Mathematical Analysis of Reconstructed CL
3.1. Geometric Models
3.2. Mathematical Model
3.3. Boundary Conditions and Initial Values
3.4. Numerical Calculation Method
4. Results and Discussion
4.1. Oxygen Concentration Distributions
4.2. Current Density Distributions
4.3. Temperature Distributions
4.4. Liquid Water and Membrane Water Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
relative gas-diffusion coefficient (m2/s) | proton conductivity (S/m) | ||
effective diffusion coefficient (m2/s) | tortuosity of carbon | ||
molecular diffusion coefficient (m2/s) | tortuosity of ionomer | ||
gas-diffusion coefficient (m2/s) | density (kg/m3) | ||
Knudsen diffusion coefficient (m2/s) | dynamic viscosity (kg/(m s)) | ||
universal gas constant (J/(mol K)) | effective density | ||
Temperature (K) | surface tension | ||
average pore radius (m) | contact angle | ||
relative molecular mass (kg/mol) | electronic potential (V) | ||
carbon volume fraction | ionic potential (V) | ||
ionomer volume fraction | concentration index | ||
liquid water saturation | cathode overpotential (V) | ||
mixed gas velocity vector (m/s) | transport coefficient | ||
source term (kg/(m3 s), W/m3…) | Subscripts | ||
gas pressure (Pa) | gas species | ||
constant pressure heat capacity (J/(mol K)) | electron | ||
effective thermal conductivity (W/(m K)) | proton | ||
gas species mass fraction | liquid water | ||
intrinsic permeability (m2) | gas phase | ||
capillary pressure (Pa) | cathode | ||
cathode electrochemical reaction rate (A/m2) | water | ||
active specific surface area (m−1) | oxygen | ||
oxygen reference concentration (mol/m3) | nitrogen | ||
Greek letters | |||
porosity | |||
tortuosity | |||
effective electrical conductivity (S/m) | |||
effective ionic conductivity (S/m) | |||
electron conductivity (S/m) |
References
- Sun, C.; Zhang, H. Review of the Development of First-Generation Redox Flow Batteries: Iron-Chromium System. ChemSusChem 2022, 15, e202101798. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; Di Noto, V. An Efficient Barrier toward Vanadium Crossover in Redox Flow Batteries: The Bilayer [Nafion/(WO3)x] Hybrid Inorganic-Organic Membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Dong, P.; Xie, G.; Ni, M. Improved Energy Performance of a PEM Fuel Cell by Introducing Discontinuous S-Shaped and Crescent Ribs into Flowing Channels. Energy 2021, 222, 119920. [Google Scholar] [CrossRef]
- Majlan, E.H.; Rohendi, D.; Daud, W.R.W.; Husaini, T.; Haque, M.A. Electrode for Proton Exchange Membrane Fuel Cells: A Review. Renew. Sustain. Energy Rev. 2018, 89, 117–134. [Google Scholar] [CrossRef]
- Shi, X.; Pan, J.; Pang, L.; Wang, R.; Li, G.; Tian, J.; Wang, H. 3D Microfracture Network and Seepage Characteristics of Low-Volatility Bituminous Coal Based on Nano-CT. J. Nat. Gas Sci. Eng. 2020, 83, 103556. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; Liu, S.; Chen, Z.; Yuan, L. Pore Structure Characterization of Coal by Synchrotron Radiation Nano-CT. Fuel 2018, 215, 102–110. [Google Scholar] [CrossRef]
- Cetinbas, F.C.; Ahluwalia, R.K.; Kariuki, N.N.; De Andrade, V.; Myers, D.J. Effects of Porous Carbon Morphology, Agglomerate Structure and Relative Humidity on Local Oxygen Transport Resistance. J. Electrochem. Soc. 2020, 167, 013508. [Google Scholar] [CrossRef]
- Braaten, J.P.; Ogawa, S.; Yarlagadda, V.; Kongkanand, A.; Litster, S. Studying Pt-Based Fuel Cell Electrode Degradation with Nanoscale X-Ray Computed Tomography. J. Power Sources 2020, 478, 229049. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, J.; Wang, H.; Lu, S.; Xiang, Y. The Effects of Different Dimensional Carbon Additives on Performance of PEMFC with Low-Pt Loading Cathode Catalytic Layers. Int. J. Hydrogen Energy 2021, 46, 15887–15895. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, G.; Jiao, K. Characteristics of PEMFC Operating at High Current Density with Low External Humidification. Energy Convers. Manag. 2017, 150, 763–774. [Google Scholar] [CrossRef]
- Chen, H.; Liu, B.; Zhang, T.; Pei, P. Influencing Sensitivities of Critical Operating Parameters on PEMFC Output Performance and Gas Distribution Quality under Different Electrical Load Conditions. Appl. Energy 2019, 255, 113849. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.Y.; Yang, L. Enhancement Effects of the Obstacle Arrangement and Gradient Height Distribution in Serpentine Flow-Field on the Performances of a PEMFC. Energy Convers. Manag. 2022, 252, 115077. [Google Scholar] [CrossRef]
- Sun, W.; Peppley, B.A.; Karan, K. An Improved Two-Dimensional Agglomerate Cathode Model to Study the Influence of Catalyst Layer Structural Parameters. Electrochim. Acta 2005, 50, 3359–3374. [Google Scholar] [CrossRef]
- Sohn, Y.-J.; Yim, S.-D.; Park, G.-G.; Kim, M.; Cha, S.-W.; Kim, K. PEMFC Modeling Based on Characterization of Effective Diffusivity in Simulated Cathode Catalyst Layer. Int. J. Hydrogen Energy 2017, 42, 13226–13233. [Google Scholar] [CrossRef]
- Hosseini, M.; Afrouzi, H.H.; Arasteh, H.; Toghraie, D. Energy Analysis of a Proton Exchange Membrane Fuel Cell (PEMFC) with an Open-Ended Anode Using Agglomerate Model: A CFD Study. Energy 2019, 188, 116090. [Google Scholar] [CrossRef]
- Cosse, C.; Schumann, M.; Grumm, F.; Becker, D.; Schulz, D. Numerical Investigation of PEMFC Short-Circuit Behaviour Using an Agglomerate Model Approach. Energies 2020, 13, 4108. [Google Scholar] [CrossRef]
- Yang, L.; Cao, C.; Gan, Q.; Pei, H.; Zhang, Q.; Li, P. Revealing Failure Modes and Effect of Catalyst Layer Properties for PEM Fuel Cell Cold Start Using an Agglomerate Model. Appl. Energy 2022, 312, 118792. [Google Scholar] [CrossRef]
- Kotaka, T.; Tabuchi, Y.; Mukherjee, P.P. Microstructural Analysis of Mass Transport Phenomena in Gas Diffusion Media for High Current Density Operation in PEM Fuel Cells. J. Power Sources 2015, 280, 231–239. [Google Scholar] [CrossRef]
- Zenyuk, I.V. Gas-Diffusion-Layer Structural Properties under Compression via X-Ray Tomography. J. Power Sources 2016, 328, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Jiang, F. Impact of PTFE Content and Distribution on Liquid–Gas Flow in PEMFC Carbon Paper Gas Distribution Layer: 3D Lattice Boltzmann Simulations. Int. J. Hydrogen Energy 2016, 41, 8550–8562. [Google Scholar] [CrossRef]
- Satjaritanun, P.; Weidner, J.W.; Hirano, S.; Lu, Z.; Khunatorn, Y.; Ogawa, S.; Litster, S.E.; Shum, A.D.; Zenyuk, I.V.; Shimpalee, S. Micro-Scale Analysis of Liquid Water Breakthrough inside Gas Diffusion Layer for PEMFC Using X-Ray Computed Tomography and Lattice Boltzmann Method. J. Electrochem. Soc. 2017, 164, E3359–E3371. [Google Scholar] [CrossRef]
- Jinuntuya, F.; Whiteley, M.; Chen, R.; Fly, A. The Effects of Gas Diffusion Layers Structure on Water Transportation Using X-Ray Computed Tomography Based Lattice Boltzmann Method. J. Power Sources 2018, 378, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Froning, D.; Reimer, U.; Lehnert, W. Apparent Contact Angles of Liquid Water Droplet Breaking through a Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cell. Int. J. Hydrogen Energy 2018, 43, 6318–6330. [Google Scholar] [CrossRef]
- Cetinbas, F.C.; Ahluwalia, R.K.; Shum, A.D.; Zenyuk, I.V. Direct Simulations of Pore-Scale Water Transport through Diffusion Media. J. Electrochem. Soc. 2019, 166, F3001–F3008. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, H.; Xiao, L.; Bazylak, A.; Gao, X.; Sui, P.-C. Pore-Scale Modeling of Gas Diffusion Layers: Effects of Compression on Transport Properties. J. Power Sources 2021, 496, 229822. [Google Scholar] [CrossRef]
- Shangguan, X.; Li, Y.; Qin, Y.; Cao, S.; Zhang, J.; Yin, Y. Effect of the Porosity Distribution on the Liquid Water Transport in the Gas Diffusion Layer of PEMFC. Electrochim. Acta 2021, 371, 137814. [Google Scholar] [CrossRef]
- Babu, S.K.; Chung, H.T.; Zelenay, P.; Litster, S. Resolving Electrode Morphology’s Impact on Platinum Group Metal- Free Cathode Performance Using Nano-CT of 3D Hierarchical Pore and Ionomer Distribution. ACS Appl. Mater. Interfaces 2016, 8, 32764–32777. [Google Scholar] [CrossRef]
- Cetinbas, F.C.; Ahluwalia, R.K.; Kariuki, N.; De Andrade, V.; Fongalland, D.; Smith, L.; Sharman, J.; Ferreira, P.; Rasouli, S.; Myers, D.J. Hybrid Approach Combining Multiple Characterization Techniques and Simulations for Microstructural Analysis of Proton Exchange Membrane Fuel Cell Electrodes. J. Power Sources 2017, 344, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Satjaritanun, P.; Hirano, S.; Zenyuk, I.V.; Weidner, J.W.; Tippayawong, N.; Shimpalee, S. Numerical Study of Electrochemical Kinetics and Mass Transport inside Nano-Structural Catalyst Layer of PEMFC Using Lattice Boltzmann Agglomeration Method. J. Electrochem. Soc. 2020, 167, 013516. [Google Scholar] [CrossRef]
- Inoue, G.; Yokoyama, K.; Ooyama, J.; Terao, T.; Tokunaga, T.; Kubo, N.; Kawase, M. Theoretical Examination of Effective Oxygen Diffusion Coefficient and Electrical Conductivity of Polymer Electrolyte Fuel Cell Porous Components. J. Power Sources 2016, 327, 610–621. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, S.; Sui, P.-C.; Gao, X. Multiscale Modeling of an Angled Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells: Performance Enhancing for Aviation Applications. Int. J. Hydrogen Energy 2021, 46, 20702–20714. [Google Scholar] [CrossRef]
- Sone, Y.; Ekdunge, P.; Simonsson, D. Proton Conductivity of Nafion 117 as Measured by a Four-Electrode AC Impedance Method. J. Electrochem. Soc. 1996, 143, 1254–1259. [Google Scholar] [CrossRef]
- Probst, N.; Grivei, E. Structure and Electrical Properties of Carbon Black. Carbon 2002, 40, 201–205. [Google Scholar] [CrossRef]
- Vetter, R.; Schumacher, J.O. Free Open Reference Implementation of a Two-Phase PEM Fuel Cell Model. Comput. Phys. Commun. 2019, 234, 223–234. [Google Scholar] [CrossRef]
- Lange, K.J.; Sui, P.-C.; Djilali, N. Pore Scale Simulation of Transport and Electrochemical Reactions in Reconstructed PEMFC Catalyst Layers. J. Electrochem. Soc. 2010, 157, B1434. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, W.; Xu, L.; Wang, Y. Simulation of the Catalyst Layer in PEMFC Based on a Novel Two-Phase Lattice Model. Electrochim. Acta 2011, 56, 6912–6918. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, L.; Chuang, P.-Y.A.; Djilali, N.; Sui, P.-C. Coupled Stress–Strain and Transport in Proton Exchange Membrane Fuel Cell with Metallic Bipolar Plates. Appl. Energy 2019, 251, 113316. [Google Scholar] [CrossRef]
- Cai, Y.; Fang, Z.; Chen, B.; Yang, T.; Tu, Z. Numerical Study on a Novel 3D Cathode Flow Field and Evaluation Criteria for the PEM Fuel Cell Design. Energy 2018, 161, 28–37. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Dav, B.; Srinivasan, S.; Appleby, A.J.; Martin, C.R. The Platinum Microelectrode/Nafion Interface: An Electrochemical ImpedanceSpectroscopicAnalysisof Oxygen Reduction Kinetics and Nation Characteristics. J. Electrochem. Soc. 1992, 139, 8. [Google Scholar]
- Wang, Y.; Wang, C.-Y. Dynamics of Polymer Electrolyte Fuel Cells Undergoing Load Changes. Electrochim. Acta 2006, 51, 3924–3933. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
(cm2/s) | 0.129 |
(cm2/s) | 0.166 |
(cm2/s) | 0.161 |
(S/cm) | 0.02 |
(S/cm) | 10.0 |
Parameters | Value |
---|---|
(A/cm2) | 1.659 × 10−6 |
0.61 | |
(mol/cm3) | 40.96 × 10−6 |
1.0 | |
(C/mol) | 96,487.0 |
(J/(mol K)) | 8.314 |
Variables | PEM Side | GDL Side |
---|---|---|
Oxygen concentration (mol/cm3) | / | 10.1 × 10−6 |
Liquid water saturation | / | 0 |
Water vapor concentration (mol/cm3) | / | 0 |
Proton potential (V) | 0.908 | 0.9 |
Electron potential (V) | 1.738 | 1.73 |
Temperature (K) | 353.0 | 353.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Z.; Song, H.; Yang, X.; Jiang, P.; Chen, R.; Harandi, H.B.; Zhang, H.; Pan, M. Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC. Membranes 2022, 12, 1001. https://doi.org/10.3390/membranes12101001
Zhan Z, Song H, Yang X, Jiang P, Chen R, Harandi HB, Zhang H, Pan M. Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC. Membranes. 2022; 12(10):1001. https://doi.org/10.3390/membranes12101001
Chicago/Turabian StyleZhan, Zhigang, Hao Song, Xiaoxiang Yang, Panxing Jiang, Rui Chen, Hesam Bazargan Harandi, Heng Zhang, and Mu Pan. 2022. "Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC" Membranes 12, no. 10: 1001. https://doi.org/10.3390/membranes12101001
APA StyleZhan, Z., Song, H., Yang, X., Jiang, P., Chen, R., Harandi, H. B., Zhang, H., & Pan, M. (2022). Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC. Membranes, 12(10), 1001. https://doi.org/10.3390/membranes12101001