Evaluating the Feasibility of Employing Dynamic Membranes for the Direct Filtration of Municipal Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pilot Plant
2.2. Influent and Experimental Plan
2.3. Analytical Methods and Calculations
3. Results and Discussions
3.1. DM Self-Forming Capacity and Filtration Performance
3.2. Permeate Quality
3.3. Process Feasibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Hubacek, K.; Shan, Y.; Gerbens-Leenes, W.; Liu, J. A review of water stress and water footprint accounting. Water 2021, 13, 201. [Google Scholar] [CrossRef]
- Ferronato, N.; Rada, E.C.; Portillo, M.A.G.; Cioca, L.I.; Ragazzi, M.; Torretta, V. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Donoso-Bravo, A.; Olivares, D.; Lesty, Y.; Bossche, H.V. Exploitation of the ADM1 in a XXI century wastewater resource recovery facility (WRRF): The case of codigestion and thermal hydrolysis. Water Res. 2020, 175, 115654. [Google Scholar] [CrossRef]
- Sid, S.; Volant, A.; Lesage, G.; Heran, M. Cost minimization in a full-scale conventional wastewater treatment plant: Associated costs of biological energy consumption versus sludge production. Water Sci. Technol. 2017, 76, 2473–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinardell, S.; Astals, S.; Peces, M.; Cardete, M.A.; Fernández, I.; Mata-Alvarez, J.; Dosta, J. Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review. Renew. Sustain. Energy Rev. 2020, 130, 109936. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Li, P.; Li, R.H.; Li, X.Y. Direct filtration for the treatment of the coagulated domestic sewage using flat-sheet ceramic membranes. Chemosphere 2019, 223, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, T.A.; Fdz-Polanco, F.; Peña, M. Membrane-Based Technologies for the Up-Concentration of Municipal Wastewater: A Review of Pretreatment Intensification. Sep. Purif. Rev. 2018, 49, 1–19. [Google Scholar] [CrossRef]
- Kimura, K.; Honoki, D.; Sato, T. Effective physical cleaning and adequate membrane flux for direct membrane filtration (DMF) of municipal wastewater: Up-concentration of organic matter for efficient energy recovery. Sep. Purif. Technol. 2017, 181, 37–43. [Google Scholar] [CrossRef]
- Jin, Z.; Gong, H.; Temmink, H.; Nie, H.; Wu, J.; Zuo, J.; Wang, K. Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery. Chem. Eng. J. 2016, 292, 130–138. [Google Scholar] [CrossRef]
- Ravazzini, A.M.; van Nieuwenhuijzen, A.F.; van der Graaf, J.H.M.J. Direct ultrafiltration of municipal wastewater: Comparison between filtration of raw sewage and primary clarifier effluent. Desalination 2005, 178, 51–62. [Google Scholar] [CrossRef]
- Usman, M.; Belkasmi, A.I.; Kastoyiannis, I.A.; Ernst, M. Pre-deposited dynamic membrane adsorber formed of microscale conventional iron oxide-based adsorbents to remove arsenic from water: Application study and mathematical modeling. J. Chem. Technol. Biotechnol. 2021, 96, 1504–1514. [Google Scholar] [CrossRef]
- Xiong, J.; Yu, S.; Hu, Y.; Yang, Y.; Wang, X.C. Applying a dynamic membrane filtration (DMF)process for domestic wastewater preconcentration: Organics recovery and bioenergy production potential analysis. Sci. Total Environ. 2019, 680, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, X.C.; Ngo, H.H.; Sun, Q.; Yang, Y. Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: A review. Bioresour. Technol. 2018, 247, 1107–1118. [Google Scholar] [CrossRef]
- Mohan, S.M.; Nagalakshmi, S. A review on aerobic self-forming dynamic membrane bioreactor: Formation, performance, fouling and cleaning. J. Water Process Eng. 2020, 37, 101541. [Google Scholar] [CrossRef]
- Sanchis-Perucho, P.; Aguado, D.; Ferrer, J.; Seco, A.; Robles, Á. Dynamic Membranes for Enhancing Resources Recovery from Municipal Wastewater. Membranes 2022, 12, 214. [Google Scholar] [CrossRef]
- Bridgewater, L.; American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for Examination of Water and Waste. In Water, 22nd ed.; American Water Works Association: Denver, CO, USA, 2012. [Google Scholar]
- Seco, A.; Aparicio, S.; González-Camejo, J.; Jiménez-Benítez, A.; Mateo, O.; Mora, J.F.; Noriega-Hevia, G.; Sanchis-Perucho, P.; Serna-García, R.; Zamorano-López, N.; et al. Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Sci. Technol. 2018, 78, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Darrow, K.; Tidball, R.; Wang, J.; Hampson, A. Catalog of CHP Technologies, U.S. Environmental Protection Agency Combined Heat and Power Partnership; at ICF International (September 2017), with Funding from the U.S. Environmental Protection Agency and the U.S. Department of Energy. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/catalog_of_chp_technologies.pdf (accessed on 11 September 2022).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Aura Energía, Spanish Electricity Rates (Tarifa Eléctrica España). 2022. Available online: https://www.aura-energia.com/tarifas-luz-industria-peninsula/ (accessed on 11 September 2022).
- Millanar-Marfa, J.M.J.; Borea, L.; Castrogiovanni, F.; Hasan, S.W.; Choo, K.H.; Korshin, G.V.; de Luna, M.D.G.; Ballesteros, F.C.; Belgiorno, V.; Naddeo, V. Self-forming Dynamic Membranes for Wastewater Treatment. Sep. Purif. Rev. 2022, 51, 195–211. [Google Scholar] [CrossRef]
- Ersahin, M.E.; Ozgun, H.; van Lier, J.B. Effect of Support Material Properties on Dynamic Membrane Filtration Performance. Sep. Sci. Technol. 2013, 48, 2263–2269. [Google Scholar] [CrossRef]
- Gong, H.; Wang, X.; Zheng, M.; Jin, Z.; Wang, K. Direct sewage filtration for concentration of organic matters by dynamic membrane. Water Sci. Technol. 2014, 70, 1434–1440. [Google Scholar] [CrossRef]
- Mezohegyi, G.; Bilad, M.R.; Vankelecom, I.F.J. Direct sewage up-concentration by submerged aerated and vibrated membranes. Bioresour. Technol. 2012, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pretel, R.; Robles, A.; Ruano, M.V.; Seco, A.; Ferrer, J. Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. J. Environ. Manag. 2016, 166, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Robles, Á.; Capson-Tojo, G.; Galès, A.; Ruano, M.V.; Sialve, B.; Ferrer, J.; Steyer, J.P. Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. J. Environ. Manag. 2020, 261, 110244. [Google Scholar] [CrossRef] [PubMed]
- Weerasekara, N.A.; Choo, K.H.; Lee, C.H. Hybridization of physical cleaning and quorum quenching to minimize membrane biofouling and energy consumption in a membrane bioreactor. Water Res. 2014, 67, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.A.M.; Sanjuan, M.T.M.; Gimeno, A.E.P. Ciencia y Tecnología Del Medio Ambiente, 2nd ed.; Universitat Politècnica de València: Valencia, Spain, 2000; Available online: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_292-2-2 (accessed on 8 October 2022).
Parameter | Units | Mean ± SD |
---|---|---|
TSS | mg TSS L−1 | 321 ± 98 |
COD | mg COD L−1 | 512 ± 118 |
SCOD | mg COD L−1 | 63 ± 28 |
TN | mg N L−1 | 56.7 ± 10.8 |
TP | mg P L−1 | 6.4 ± 1.6 |
Alk | mg CaCO3 L−1 | 342 ± 73 |
pH | - | 7.4 ± 0.7 |
Turbidity | NTU | 399 ± 124 |
Exp. | Supporting Material Employed | Fouling Growth Rate | ||
---|---|---|---|---|
Layers | Average Pore Size (µm) | Slope (LMH bar−1 d−1) | R2 | |
1 | 2 | 1 | 10.03 | 0.789 |
2 | 1 | 1 | 9.85 | 0.888 |
3 | 2 | 5 | 9.24 | 0.955 |
4 | 1 | 5 | 5.21 | 0.877 |
Exp. | TSS | Turbidity | COD | TN | TP | |||||
---|---|---|---|---|---|---|---|---|---|---|
(mg L−1) | (%) * | (NTU) | (%) * | (mg L−1) | (%) * | (mg L−1) | (%) * | (mg L−1) | (%) * | |
1 | 67 | 21 | 167 | 55 | 155 | 30 | 48.7 | 86 | 4.7 | 73 |
2 | 73 | 23 | 157 | 53 | 159 | 31 | 50.1 | 88 | 5.0 | 78 |
3 | 70 | 22 | 161 | 55 | 167 | 33 | 49.4 | 87 | 4.8 | 75 |
4 | 88 | 27 | 174 | 59 | 186 | 36 | 50.4 | 89 | 4.9 | 77 |
PS | 132 | 41 | - | - | 218 | 43 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchis-Perucho, P.; Aguado, D.; Ferrer, J.; Seco, A.; Robles, Á. Evaluating the Feasibility of Employing Dynamic Membranes for the Direct Filtration of Municipal Wastewater. Membranes 2022, 12, 1013. https://doi.org/10.3390/membranes12101013
Sanchis-Perucho P, Aguado D, Ferrer J, Seco A, Robles Á. Evaluating the Feasibility of Employing Dynamic Membranes for the Direct Filtration of Municipal Wastewater. Membranes. 2022; 12(10):1013. https://doi.org/10.3390/membranes12101013
Chicago/Turabian StyleSanchis-Perucho, Pau, Daniel Aguado, José Ferrer, Aurora Seco, and Ángel Robles. 2022. "Evaluating the Feasibility of Employing Dynamic Membranes for the Direct Filtration of Municipal Wastewater" Membranes 12, no. 10: 1013. https://doi.org/10.3390/membranes12101013
APA StyleSanchis-Perucho, P., Aguado, D., Ferrer, J., Seco, A., & Robles, Á. (2022). Evaluating the Feasibility of Employing Dynamic Membranes for the Direct Filtration of Municipal Wastewater. Membranes, 12(10), 1013. https://doi.org/10.3390/membranes12101013