Predicting the Potentiometric Sensitivity of Membrane Sensors Based on Modified Diphenylphosphoryl Acetamide Ionophores with QSPR Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset for QSPR Modelling
2.2. Molecular Descriptors
2.3. Regression Modelling
2.4. Potentiometric Experiment
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mostafa, I.M.; Meng, C.; Dong, Z.; Lou, B.; Xu, G. Potentiometric Sensors for the Determination of Pharmaceuticals Drugs. Anal. Sci. 2021, 38, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Forster, R.J.; Keyes, T.E. Ion-selective Electrodes in Environmental Analysis. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; Meyers, R.A., Miller, M.P., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Maj-Żurawska, M.; Hulanicki, A. ION-SELECTIVE ELECTRODES|Food Applications. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 226–230. [Google Scholar] [CrossRef]
- Bobacka, J. Conducting Polymer-Based Solid-State Ion-Selective Electrodes. Electroanalysis 2006, 18, 7–18. [Google Scholar] [CrossRef]
- Johnson, R.D.; Bachas, L.G. Ionophore-based ion-selective potentiometric and optical sensors. Anal. Bioanal. Chem. 2003, 376, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Legin, A.V.; Babain, V.A.; Kirsanov, D.O.; Mednova, O.V. Cross-sensitive rare earth metal ion sensors based on extraction systems. Sens. Actuators B Chem. 2008, 131, 29–36. [Google Scholar] [CrossRef]
- Alyapyshev, M.; Babain, V.; Borisova, N.; Eliseev, I.; Kirsanov, D.; Kostin, A.; Legin, A.; Reshetova, M.; Smirnova, Z. 2,2′-Dipyridyl-6,6′-dicarboxylic acid diamides: Synthesis, complexation and extraction properties. Polyhedron 2010, 29, 1998–2005. [Google Scholar] [CrossRef]
- Alyapyshev, M.; Ashina, J.; Dar’in, D.; Kenf, E.; Kirsanov, D.; Tkachenko, L.; Legin, A.; Starova, G.; Babain, V. 1,10-Phenanthroline-2,9-dicarboxamides as ligands for separation and sensing of hazardous metals. RSC Adv. 2016, 6, 68642–68652. [Google Scholar] [CrossRef]
- Grisoni, F.; Ballabio, D.; Todeschini, R.; Consonni, V. Molecular Descriptors for Structure–Activity Applications: A Hands-On Approach. In Computational Toxicology; Nicolotti, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- López-López, E.; Fernández-de Gortari, E.; Medina-Franco, J.L. Yes SIR! On the structure-inactivity relationships in drug discovery. Drug Discov. Today 2022, 27, 2353–2362. [Google Scholar] [CrossRef]
- Hamadache, M.; Amrane, A.; Benkortbi, O.; Hanini, S.; Khaouane, L.; Si Moussa, C. Environmental Toxicity of Pesticides, and Its Modeling by QSAR Approaches. In Advances in QSAR. Modeling Challenges and Advances in Computational Chemistry and Physics, volume 24; Roy, K., Ed.; Springer: Cham, Switzerland, 2017; pp. 471–501. [Google Scholar] [CrossRef]
- Samadi, A.; Pour, A.K.; Jamieson, R. Development of remediation technologies for organic contaminants informed by QSAR/QSPR models. Environ. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
- Schustik, S.A.; Cravero, F.; Ponzoni, I.; Diaz, M.F. Polymer informatics: Expert-in-the-loop in QSPR modeling of refractive index. Comput. Mater. Sci. 2021, 194, 110460. [Google Scholar] [CrossRef]
- Huang, L.; Jolliet, O. A Quantitative Structure-Property Relationship (QSPR) for Estimating Solid Material-Air Partition Coefficients of Organic Compounds. Indoor Air 2018, 29, 79–88. [Google Scholar] [CrossRef]
- Soloviev, V.; Varnek, A.; Babain, V.; Polukeev, V.; Ashina, J.; Legin, E.; Legin, A.; Kirsanov, D. QSPR modeling of potentiometric sensitivity towards heavy metal ions for polymeric membrane sensors. Sens. Actuators B Chem. 2019, 301, 126941. [Google Scholar] [CrossRef]
- Vladimirova, N.; Polukeev, V.; Ashina, J.; Babain, V.; Legin, A.; Kirsanov, D. Prediction of Carbonate Selectivity of PVC-Plasticized Sensor Membranes with Newly Synthesized Ionophores through QSPR Modeling. Chemosensors 2022, 10, 43. [Google Scholar] [CrossRef]
- Martynko, E.; Solov’Ev, V.; Varnek, A.; Legin, A.; Kirsanov, D. QSPR modeling of potentiometric Mg2+/Ca2+ selectivity for PVC-plasticized sensor membranes. Electroanalysis 2019, 32, 792–798. [Google Scholar] [CrossRef]
- Jendrlin, M.; Radu, A.; Zholobenko, V.; Kirsanov, D. Performance modelling of zeolite-based potentiometric sensors. Sens. Actuators B Chem. 2021, 356, 131343. [Google Scholar] [CrossRef]
- Turanov, A.; Karandashev, V.; Yarkevich, A. Extraction of Rare Earth Elements(III) from Perchlorate Solutions with Modified Diphenylphosphorylacetamides. Russ. J. Inorg. Chem. 2021, 66, 572–577. [Google Scholar] [CrossRef]
- Legin, A.; Kirsanov, D.; Babain, V.; Borovoy, A.; Herbst, R. Cross-sensitive rare-earth metal sensors based on bidentate neutral organophosphorus compounds and chlorinated cobalt dicarbollide. Anal. Chim. Acta 2006, 572, 243–247. [Google Scholar] [CrossRef]
- Solov’ev, V.; Varnek, A. Qspr Models on Fragment Descriptors. Available online: http://vpsolovev.ru/wp-content/uploads/sites/9/2017/05/isida-qspr-help-2017.pdf (accessed on 8 July 2022).
- Xu, Q.; Mensah, R.A.; Jin, C.; Jiang, L. A critical review of the methods and applications of microscale combustion calorimetry for material flammability assessment. J. Therm. Anal. Calorim. 2021, 147, 6001–6013. [Google Scholar] [CrossRef]
- Krishna, J.G.; Roy, K. QSPR modeling of absorption maxima of dyes used in dye sensitized solar cells (DSSCs). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 265, 120387. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Yarkevich, A.N.; Brel, V.K.; Makhaeva, G.F.; Serebryakova, O.G.; Boltneva, N.P.; Kovaleva, N.V. Synthesis and investigation of biological activity of phosphorylated amines and amides. Russ. J. Gen. Chem. 2015, 85, 1644–1649. [Google Scholar] [CrossRef]
- Kirsanov, D.; Khaydukova, M.; Tkachenko, L.; Legin, A.; Babain, V. Potentiometric Sensor Array for Analysis of Complex Rare Earth Mixtures. Electroanalysis 2012, 24, 121–130. [Google Scholar] [CrossRef]
Chemical Structure | IUPAC Name | |
---|---|---|
1 | 3,3′-(butane-1,4-diylbis(octylazanediyl))bis(1-(diphenylphosphoryl)propan-2-one) | |
2 | 3,3′-(butane -1,4-diylbis(octylazanediyl))bis(1-(diphenylphosphoryl)propan-2-one) | |
3 | 3,3′-(hexane-1,6-diylbis(octylazanediyl))bis(1-(diphenylphosphoryl)propan-2-one) | |
4 | 1,1′-(piperazine-1,4-diyl)bis(2-(diphenylphosphoryl)ethanone) |
Slope | RMSE | R2 | ||
---|---|---|---|---|
Cu2+ | calibration | 0.86 | 4.29 | 0.86 |
validation | 0.64 | 6.88 | 0.66 | |
Cd2+ | calibration | 0.91 | 2.85 | 0.91 |
validation | 0.76 | 4.22 | 0.81 | |
Pb2+ | calibration | 0.95 | 2.60 | 0.95 |
validation | 0.55 | 7.49 | 0.64 |
Cu2+ | Cd2+ | Pb2+ | ||||
---|---|---|---|---|---|---|
Experimental | Predicted | Experimental | Predicted | Experimental | Predicted | |
1 | 20.3 | 20.9 | 24.6 | 24.7 | 32.9 | 29.7 |
2 | 18.3 | 16.4 | 22.1 | 22.5 | 31.7 | 29.2 |
3 | 21.1 | 15.3 | 24.7 | 22.5 | 34.6 | 29.1 |
4 | 23.4 | 19.4 | 23.0 | 23.1 | 34.9 | 27.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladimirova, N.; Puchkova, E.; Dar’in, D.; Turanov, A.; Babain, V.; Kirsanov, D. Predicting the Potentiometric Sensitivity of Membrane Sensors Based on Modified Diphenylphosphoryl Acetamide Ionophores with QSPR Modeling. Membranes 2022, 12, 953. https://doi.org/10.3390/membranes12100953
Vladimirova N, Puchkova E, Dar’in D, Turanov A, Babain V, Kirsanov D. Predicting the Potentiometric Sensitivity of Membrane Sensors Based on Modified Diphenylphosphoryl Acetamide Ionophores with QSPR Modeling. Membranes. 2022; 12(10):953. https://doi.org/10.3390/membranes12100953
Chicago/Turabian StyleVladimirova, Nadezhda, Elena Puchkova, Dmitry Dar’in, Alexander Turanov, Vasily Babain, and Dmitry Kirsanov. 2022. "Predicting the Potentiometric Sensitivity of Membrane Sensors Based on Modified Diphenylphosphoryl Acetamide Ionophores with QSPR Modeling" Membranes 12, no. 10: 953. https://doi.org/10.3390/membranes12100953
APA StyleVladimirova, N., Puchkova, E., Dar’in, D., Turanov, A., Babain, V., & Kirsanov, D. (2022). Predicting the Potentiometric Sensitivity of Membrane Sensors Based on Modified Diphenylphosphoryl Acetamide Ionophores with QSPR Modeling. Membranes, 12(10), 953. https://doi.org/10.3390/membranes12100953