Effect of Graphene Oxide on the Properties of Polymer Inclusion Membranes for Gold Extraction from Acidic Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Membrane Characterization
2.3.1. Scanning Electron Microscopy, Fourier-transform Infrared Spectroscopy, and Thermogravimetric Analyses
2.3.2. Ion Exchange Capacity
2.3.3. Water Uptake
2.4. Gold Extraction Experiment
3. Results and Discussion
3.1. Effect of Graphene Oxide on Membrane Characterization
3.1.1. Scanning Electron Microscopy
3.1.2. Fourier-Transform Infrared Spectroscopy
3.1.3. Thermal Gravimetric Analysis
3.1.4. Ion Exchange Capacity
3.1.5. Water Uptake
3.2. Effect of the GO Content on the Membrane Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Sun, Y.; Tang, N.; Miao, C.; Wang, Y.; Tang, L.; Wang, S.; Yang, X. Simultaneous extraction and recovery of gold(I) from alkaline solutions using an environmentally benign polymer inclusion membrane with ionic liquid as the carrier. Sep. Purif. Technol. 2019, 222, 136–144. [Google Scholar] [CrossRef]
- Cho, Y.; Cattrall, R.W.; Kolev, S.D. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water. J. Hazard. Mater 2017, 341, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Liu, L.; Yang, Q.; Zhang, B.; Qiu, H.; Ruan, S.; Chen, Y.; Li, H. Decomposition of Cyanide from Gold Leaching Tailings by Using Sodium Metabisulphite and Hydrogen Peroxide. Adv. Mater. Sci. Eng. 2020, 2020, 7. [Google Scholar] [CrossRef]
- Ebbs, S. Biological degradation of cyanide compounds. Curr. Opin. Biotechnol. 2004, 15, 231–236. [Google Scholar] [CrossRef]
- Razanamahandry, L.C.; Onwordi, C.T.; Saban, W.; Bashir, A.K.H.; Mekuto, L.; Malenga, E. Performance of various cyanide degrading bacteria on the biodegradation of free cyanide in water. J. Hazard. Mater. 2019, 380, 120900. [Google Scholar] [CrossRef]
- Breuer, P.L.; Hewitt, D.M. INCO Cyanide destruction insights from plant reviews and laboratory evaluations. Miner. Process. Extr. Metall 2019, 129, 1–10. [Google Scholar] [CrossRef]
- Jauto, A.H.; Memon, S.A.; Channa, A.; Hussain, A. Environmental Effects Efficient removal of cyanide from industrial effluent using acid treated modified surface activated carbon. Energy Sources, Part A Recover. Util. Environ. Eff. 2019, 41, 2715–2724. [Google Scholar]
- Pueyo, N.; Miguel, N.; Ovelleiro, J.L.; Ormad, M.P. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxideozone process. Water Sci. Technol. 2016, 74, 482–490. [Google Scholar] [CrossRef]
- Yang, T.; Cao, J.; Cao, X.; Dong, Z.; Yang, Z.; Chen, Z.; Qiu, S. Experimental study on cyanide-contaminated soil (China) treatment by leaching and decomposition. Environ. Sci. Pollut. Res. 2020, 27, 8176–8187. [Google Scholar] [CrossRef]
- Yazıcı, E.Y.; Deveci, H.; Yılmaz, E.; Ahlatcı, F.; Celep, O. Recovery of Cyanide from Effluents Using Carbon Dioxide. Mugla. J. Sci. Technol. 2017, 3, 171–177. [Google Scholar] [CrossRef]
- Parga, J.R.; Valenzuela, J.L.; Moreno, H.; Pérez, J.E. Copper and Cyanide Recovery in Cyanidation Effluents. Adv. Chem. Eng. Sci. 2011, 1, 191–197. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Mandal, M.K. Synthesis and characterization of ionic liquid based mixed matrix membrane for acid gas separation. J. Clean. Prod. 2017, 17, 174–183. [Google Scholar] [CrossRef]
- Parhi, P.K. Supported liquid membrane principle and its practices: A short review. J. Chem. 2013, 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, X.; Cao, L.; Zhang, X.; Yang, C. Gold-recovery PVDF membrane functionalized with thiosemicarbazide. Chem. Eng. J. 2015, 280, 399–408. [Google Scholar] [CrossRef]
- Wu, R.; Tan, Y.; Meng, F.; Zhang, Y.; Huang, Y. PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation. Desalination 2022, 540. [Google Scholar] [CrossRef]
- Bet-Moushoul, E.; Mansourpanah, Y.; Farhadi, K.; Tabatabaei, M. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J. 2016, 283, 29–46. [Google Scholar] [CrossRef]
- Garcia-Ivars, J.; Iborra-Clar, M.I.; Alcaina-Miranda, M.I.; Mendoza-Roca, J.A.; Pastor-Alcañiz, L. Surface photomodification of flat-sheet PES membranes with improved antifouling properties by varying UV irradiation time and additive solution pH. Chem. Eng. J. 2016, 283, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.H.; Goh, P.S.; Ismail, A.F.; Ng, B.C.; Lai, G.S. Decolourization of aerobically treated palm oil mill effluent (AT-POME) using polyvinylidene fluoride (PVDF) ultrafiltration membrane incorporated with coupled zinc-iron oxide nanoparticles. Chem. Eng. J. 2017, 308, 359–369. [Google Scholar] [CrossRef]
- Tijing, L.D.; Woo, Y.C.; Wang-Geun, S.; Tao, H.; June-Seok, C.; Seung-Hyun, K.; Ho, K.S. Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J. Memb. Sci. 2016, 502, 158–170. [Google Scholar] [CrossRef]
- Pandey, R.P.; Shukla, G.; Manohar, M.; Shahi, V.K. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Adv. Colloid Interface Sci. 2017, 240, 15–30. [Google Scholar] [CrossRef]
- Chen, Y.; Long, J.; Xie, B.; Kuang, Y.; Chen, X.; Hou, M.; Gao, J.; Liu, H.; He, Y.; Long, C. One-Step Ultraviolet Laser-Induced Fluorine-Doped Graphene Achieving Superhydrophobic Properties and Its Application in Deicing. ACS Appl. Mater. Interfaces 2022, 14, 4647–4655. [Google Scholar] [CrossRef]
- Kaya, A.; Canan, O.; Korkmaz, H.A.; Shilpi, A.; Vinod, K.G.; Necip, A.; Aydan, Y. Reduced graphene oxide based a novel polymer inclusion membrane: Transport studies of Cr (VI). J. Mol. Liq. 2016, 219, 1124–1130. [Google Scholar] [CrossRef]
- Liu, L.; Luo, X.B.; Ding, L.; Luo, S.L. Application of Nanotechnology in the Removal of Heavy Metal from Water. In Nanomaterials for the Removal of Pollutants and Resource Reutilization; Luo, X., Deng, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 83–147. [Google Scholar]
- Soo, J.A.L.; Shoparwe, N.F.; Otitoju, T.A.; Mohamad, M.; Tan, L.S.; Li, S.; Makhtar, M.M.Z. Characterization and kinetic studies of poly(Vinylidene fluoride-co-Characterization and kinetic studies of poly(Vinylidene fluoride-co-hexafluoropropylene) polymer inclusion membrane for the malachite green extraction. Membranes 2021, 11, 676. [Google Scholar] [CrossRef]
- Abdul-halim, N.; Whitten, P.G.; Nghiem, L.D. Characterising poly (vinyl chloride)/Aliquat 336 polymer inclusion membranes: Evidence of phase separation and its role in metal extraction. Sep. Purif. Technol. 2013, 119, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Bonggotgetsakul, Y.Y.N.; Cattrall, R.W.; Kolev, S.D. Extraction of gold (III) from hydrochloric acid solutions with a PVC-based polymer inclusion membrane (PIM) containing cyphos® IL 104. Membranes 2015, 5, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Sellami, F.; Kebiche-senhadji, O.; Marais, S.; Colasse, L. Separation and Puri fi cation Technology Enhanced removal of Cr (VI) by polymer inclusion membrane based on poly (vinylidene fl uoride) and Aliquat 336. Sep. Purif. Technol. 2019, 248, 1383–5866. [Google Scholar]
- Caprarescu, S.; Miron, A.R.; Purcar, V.; Radu, A.L.; Sarbu, A.; Nicolae, C.A.; Pascu, M.; Ion-Ebrasu, D.; Raditoiu, V. Treatment of Crystal Violet from Synthetic Solution Using Membranes Doped with Natural Fruit Extract. Clean Soil Air Water 2018, 46, 1–17. [Google Scholar] [CrossRef]
- Dharmalingam, S.; Kugarajah, V. Biomass, Biofuels and Biochemicals, Microbial Electrochemical Technology; Mohan, S.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 143–194. [Google Scholar]
- Haiyang, Z.; Liguang, W.; Zhijun, Z.; Lin, Z.; Huanlin, C. Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide. Phys. Chem. 2013, 15, 9084–9092. [Google Scholar]
- Mohd Amin, N.H.; Mehamod, F.S.; Mohd Suah, F.B. A novel approach in simultaneous extraction of basic dyes by using a batch reactor consisting a polymer inclusion membrane. Alex. Eng. J. 2019, 58, 929–935. [Google Scholar] [CrossRef]
- Ling, Y.Y.; Mohd Suah, F.B. Extraction of malachite green from wastewater by using polymer inclusion membrane. J. Environ. Chem. Eng. 2017, 5, 785–794. [Google Scholar] [CrossRef]
- Najafi, F.; Rajabi, M. Thermal gravity analysis for the study of stability of graphene oxide–glycine nanocomposites. Int. Nano Lett. 2015, 5, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Xiaorui, Z.; Xue, S.; Tong, L.; Ling, W.; Minghe, C.; Jiahao, S.; Siqi, Z. Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J. Mater. Sci. Mater. Electron. 2020, 31, 13344–13351. [Google Scholar]
- Ahmad, A.L.; Farooqui, U.R.; Hamid, N.A. Effect of graphene oxide (GO) on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF- HFP) polymer electrolyte membrane. Polymer 2018, 142, 330–336. [Google Scholar] [CrossRef]
- Zinadini, S.; Akbar, A.; Rahimi, M.; Vatanpour, V. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Memb. Sci. 2014, 453, 292–301. [Google Scholar] [CrossRef]
- Long, C.; Lu, C.; Li, Y.; Wang, Z.; Zhu, H. N-spirocyclic ammonium-functionalized graphene oxide-based anion exchange membrane for fuel cells. Int. J. Hydrogen Energy. 2020, 45, 19778–19790. [Google Scholar] [CrossRef]
- Yuhai, L.; Bai, Q.; Guan, Y.; Zhang, P.; Shen, R.; Li, L.; Liu, H.; Yuan, X.; Miao, X.; Han, W.; et al. In situ plasma cleaning of large-aperture optical components in ICF. Nucl. Fusion. 2022, 62, 076023. [Google Scholar]
- Luque, J.; Salvo, D.; de Luca, G.; Cipollina, A.; Micale, G. Effect of ion exchange capacity and water uptake on hydroxide transport in PSU-TMA membranes: A DFT and molecular dynamics study. J. Memb. Sci. 2020, 599. [Google Scholar]
- Arkles, B. Hydrophobicity, hydrophilicity and silanes. Paint. Coat. Ind. 2006, 22, 114–135. [Google Scholar]
- Bano, S.; Mahmood, A.; Kim, S.; Lee, K. Membrane with improved flux and antifouling properties. J. Mater. Chem. A 2014, 3, 2065–2071. [Google Scholar] [CrossRef]
- Msomi, P.F.; Nonjola, P.T.; Ndungu, P.G.; Ramontja, J. ScienceDirect anion exchange membrane blended with TiO 2 with improved water uptake for alkaline fuel cell application. Int. J. Hydrog. Energy 2020, 45, 29465–29476. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Zheng, C.; Lin, H.; Xu, R.; Zhu, H.; Bao, L.; Xu, X. Lanthanum carbonate grafted ZSM-5 for superior phosphate uptake: Investigation of the growth and adsorption mechanism. Chem. Eng. J. 2022, 430. [Google Scholar] [CrossRef]
- Terrones, M.; Martín, O.; González, M.; Pozuelo, J.; Serrano, B.; Cabanelas, J.C.; Vega-díaz, S.M.; Baselga, J. Interphases in graphene polymer-based nanocomposites: Achievements and Challenges. Adv. Mater. 2011, 23, 5302–5310. [Google Scholar] [CrossRef]
Membrane | Polymer (wt.%) | Carrier (wt.%) | Plasticizer (wt.%) | Nanoparticles (wt.%) |
---|---|---|---|---|
PVDF-co-HFP | D2EHPA | DOP | GO | |
M1 | 50.0 | 40.0 | 10.0 | 0.0 |
M2 | 50.0 | 40.0 | 10.0 | 0.5 |
M3 | 50.0 | 40.0 | 10.0 | 1.0 |
M4 | 50.0 | 40.0 | 10.0 | 1.5 |
M5 | 50.0 | 40.0 | 10.0 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husna, S.M.; Yusoff, A.H.; Mohan, M.; Azmi, N.A.; Ter, T.P.; Shoparwe, N.F.; Sulaiman, A.Z. Effect of Graphene Oxide on the Properties of Polymer Inclusion Membranes for Gold Extraction from Acidic Solution. Membranes 2022, 12, 996. https://doi.org/10.3390/membranes12100996
Husna SM, Yusoff AH, Mohan M, Azmi NA, Ter TP, Shoparwe NF, Sulaiman AZ. Effect of Graphene Oxide on the Properties of Polymer Inclusion Membranes for Gold Extraction from Acidic Solution. Membranes. 2022; 12(10):996. https://doi.org/10.3390/membranes12100996
Chicago/Turabian StyleHusna, Siti Madiha, Abdul Hafidz Yusoff, Mythili Mohan, Nur Aina Azmi, Teo Pao Ter, Noor Fazliani Shoparwe, and Ahmad Ziad Sulaiman. 2022. "Effect of Graphene Oxide on the Properties of Polymer Inclusion Membranes for Gold Extraction from Acidic Solution" Membranes 12, no. 10: 996. https://doi.org/10.3390/membranes12100996
APA StyleHusna, S. M., Yusoff, A. H., Mohan, M., Azmi, N. A., Ter, T. P., Shoparwe, N. F., & Sulaiman, A. Z. (2022). Effect of Graphene Oxide on the Properties of Polymer Inclusion Membranes for Gold Extraction from Acidic Solution. Membranes, 12(10), 996. https://doi.org/10.3390/membranes12100996