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Abstract: In this paper, δ-MnO2 with layered structure was prepared by a facile liquid phase method,
and exfoliated MnO2 nanosheet (e-MnO2) was obtained by ultrasonic exfoliation, whose surface was
negatively charged. Then, positive charges were grafted on the surface of MnO2 nanosheets with a
polycation electrolyte of polydiallyl dimethylammonium chloride (PDDA) in different concentrations.
A series of e-MnO2@reduced graphene oxide (rGO) composites were obtained by electrostatic self-
assembly combined with hydrothermal chemical reduction. When PDDA was adjusted to 0.75 g/L,
the thickness of e-MnO2 was ~1.2 nm, and the nanosheets were uniformly adsorbed on the surface of
graphene, which shows layer-by-layer morphology with a specific surface area of ~154 m2/g. On
account of the unique heterostructure, the composite exhibits good electrochemical performance
as supercapacitor electrodes. The specific capacitance of e-MnO2-0.75@rGO can reach 456 F/g at
a current density of 1 A/g in KOH electrolyte, which still remains 201 F/g at 10 A/g. In addition,
the capacitance retention is 98.7% after 10000 charge-discharge cycles at 20 A/g. Furthermore,
an asymmetric supercapacitor (ASC) device of e-MnO2-0.75@rGO//graphene hydrogel (GH) was
assembled, of which the specific capacitance achieves 94 F/g (1 A/g) and the cycle stability is
excellent, with a retention rate of 99.3% over 10000 cycles (20 A/g).

Keywords: MnO2; reduced graphene oxide (rGO); layer-by-layer; supercapacitor

1. Introduction

Under the background of rapid global economic development, continuous consump-
tion of fossil energy, and increasingly serious environmental pollution, seeking “green” and
renewable energy has become the most urgent challenge in society nowadays. Moreover,
the breakthrough and popularization of large-scale energy storage technology is strong
support for the development of renewable energy. In many forms of energy storage, elec-
trochemical energy storage (EES) has been highly focused on because of its high theoretical
conversion efficiency of chemical energy to electrical energy, as well as the high energy
density and power density. Accordingly, further technological innovation requires continu-
ous improvement of performance, which also drives the researchers’ exploration of new
materials and mechanisms. Compared to batteries, supercapacitors can offer higher power
densities and have longer cycle life, faster charge-discharge capabilities and better safety.
Therefore, the application of supercapacitors in the field of energy storage has attracted
wide attention [1,2].

According to the mechanism of charge storage, supercapacitors can be divided into
electrical double-layer capacitors (EDLC) and pseudocapacitors. The electrode materials
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of EDLC are mainly based on carbon materials, such as activated carbon (AC) [3], carbon
nanotube (CNTs) [4–6], and graphene [7,8]. For pseudocapacitors, a variety of different
materials, such as metal oxides [9–11] or hydroxides [12,13], conductive polymers [14,15]
and metal sulfides [16], are all candidates for electrode materials. As the first pseudocapaci-
tance electrode material, RuO2 has excellent electrochemical performance [17]. However,
the toxicity and high cost limit its large-scale application [18]. Some transition metal oxides
with low cost also exhibit pseudocapacitive behaviors and can be used in supercapacitors
instead of RuO2, such as MnO2. However, due to poor electronic conductivity, charge
storage is limited to a thin layer on the surface, resulting in much lower actual capaci-
tance than its theoretical value. In addition, low charge transfer kinetics and slow ion
diffusion also affect the rate performance [19,20]. The effective strategies to improve the
electrochemical performance are to increase the specific surface area of the materials by
designing various nanostructures to increase the active sites or to construct hierarchical
porous structures to improve mass transfer [18]. When the MnO2 electrode is processed
into ultra-thin film, the specific surface area is greatly increased and the specific capacitance
can reach more than 1000 F·g−1 [21]. Lang et al. [22] proposed a composite structure of
nanoporous gold (NPG) with nanocrystalline MnO2. NPG allows electrons to pass through
MnO2 and promotes rapid ion diffusion between MnO2 and electrolyte, thus obtaining a
high specific capacitance of ~1145 F·g−1, which is very close to the theoretical value.

Recombination and doping are representative approaches to improving the electro-
chemical performance of MnO2. The recombination could produce a synergistic effect;
thus, the properties of the composite will be much better than that of the single component.
The research priority is mainly to load or grow MnO2 on porous carbon materials with
large surface areas or metal substrates with good conductivity, such as graphene [23–25],
carbon nanotubes [26], carbon fiber [27], wood-derived carbon (WC) [28], Ag [29] and
Ni [30]. Especially for graphene, it is popular in composites, which could improve the
electrical conductivity of the composite and reduce the solution resistance [31]. Composite
nanostructure also provides an interconnected pathway for electron transportation and
electrolyte diffusion [32,33], as well as inhibits the agglomeration of the individual compo-
nents [34]. In addition, the heterojunction could be reasonably designed and constructed to
adjust the electron structure and improve the rate of ion transport and electron transfer [35].
Metal doping (Au, Ag, Co, Al and Na) can also improve the inherent conductivity of MnO2
and promote the electrochemical reaction, which is mainly based on the adjustment of the
electronic structure [36]. Zong et al. [37] produced a positive electrode of Na-doped MnO2
nanosheets@carbon nanotube fibers (CNTFs) with high performance. The thin nanosheets
afford a large surface area for the electrode, as well as inserting Na+ into MnO2 improves
the conductivity to deliver a large specific capacitance (743.3 mF·cm−2), leading to a broad
potential window extended up to 0–1.2 V.

Chen et al. [38] successfully prepared a novel petal-like MnO2 nanosheet@carbon
sphere (CS) core-shell structure by in situ growth of MnO2 on the surface of the car-
bon sphere by adjusting the amount of KMnO4 precursor. Porous carbon spheres have
a high specific surface area and suitable pore size distribution, which are suitable for
energy storage and electrolyte conversion. In 1 M Na2SO4 electrolyte, it has a specific
capacitance of 231 F·g−1 at a current density of 0.5 A·g−1 and good cycle stability. The
excellent electrochemical performance is due to the unique core-shell structure and the
synergistic effect between MnO2 and carbon spheres. Ma et al. [35] prepared layered
α-MnO2 nanowire@ultrathin δ-MnO2 nanosheet core-shell nanostructure by a simple liquid
phase technique. The novel hierarchical nanostructure is composed of ultrathin δ-MnO2
nanosheets grown on the surface of the α-MnO2 ultralong nanowire. When the discharge
current density is as high as 20 A·g−1, the initial specific capacitance of the composite
reaches 153.8 F·g−1, and the stability remains at 98.1% after 10,000 charge-discharge cycles.
The good rate performance and stability of the composite are attributed to the structural
characteristics of the two MnO2 crystals. A 1D α-MnO2 nanowire as the core provided a
stable skeleton structure, and ultra-thin 2D δ-MnO2 nanosheets as the shell formed more
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active sites. Therefore, the synergistic effect of different dimensions is of great benefit to
the improvement of the electrochemical performance. In conclusion, constructing special
composite microstructure by compounding materials with different properties is consid-
ered to be an effective way to obtain excellent performance as supercapacitor electrodes on
account of their good synergistic effects, including material synergistic effect, dimensional
synergistic effect and heterostructural synergistic effect. Researchers have carried out
extensive exploration of the controllable synthesis, morphology control, structural design
and electrochemical performance improvement of the composites of MnO2 with different
dimensional carbon materials [39,40].

In general, MnO2 with relatively poor conductivity is coated on the surface of a conduc-
tive substrate, such as graphene, which makes the conductive substrate materials unable
to contact each other directly, resulting in the increase of the contact resistance between
the particles, which seriously affects the electrochemical performance of the composite. At
present, the MnO2 layer on the surface of the conductive substrate is often very thin. If
the thickness increases, the electrochemical performance of the composite will decrease
significantly, but the thin oxide layer will reduce the available active material, which is
not beneficial to the full play of its excellent electrochemical properties. Together with the
low specific capacitance of carbon materials, it is important to optimize the ratio and the
structure of carbon and MnO2 in the composites and design an MnO2/carbon interface.
In addition, constructing a layer-by-layer structure is a viable choice. Research on layer-
by-layer structure are mostly focused on multilayer films by layer-by-layer self-assembly
in the presence of substrates, such as carbon cloth [41], indium-tin-oxide (ITO) [42], Ni
foam [43] and gold-coated poly-(ethylene terephthalate) (PET) [44].

In this work, on the basis of the preparation of δ-MnO2 with a layered structure, MnO2
laminas were obtained by ultrasonic exfoliation, which was positively charged after surface
charge modification by polydiene dimethyl ammonium chloride (PDDA). As a commonly
used cationic polyelectrolyte, PDDA has many advantages, such as safety, non-toxicity,
easy solubility in water, strong cohesion, good hydrolysis stability and low cost. There is
also another positively charged polyelectrolyte always used for charge regulation, such as
polyethyleneimine (PEI). As a strong polyelectrolyte, the electrostatic interaction between
PDDA and rGO is stronger than that produced by PEI [45], so PDDA was chosen in our
research. Then, the composites with the 2D layer-by-layer structure were acquired with no
substrate by the self-assembly of MnO2 laminas with the surface positively charged and
graphene oxide (GO) nanosheets with the surface negatively charged through electrostatic
attraction. The final product, MnO2/reduced graphene oxide (rGO), was obtained by
the reduction of GO to rGO with glucose as the reductant under mild conditions. As
expected, rGO in the layer-by-layer structure has acted as a conductive layer and bridge to
improve the electrical conductivity of the MnO2/rGO composite and relieved the stacking
of MnO2 nanosheets. A series of self-assembled MnO2/rGO composites were prepared
by adjusting the concentration of cationic polymer for surface charge modification. As
supercapacitor electrodes, the composite designed with layer-by-layer heterostructure
shows high performance.

2. Experimental Section
2.1. Reagents and Materials

All the reagents used in this part were of analytical grade. KMnO4 was purchased from
Kemiou Chemical Reagent Co., Ltd. (Tianjin, China). Sodium dodecyl sulfate (SDS) was
purchased from Aibi Chemical Reagent Co., Ltd. (Shanghai, China). H2SO4 (98 wt.%) and
HCl (37 wt.%) were purchased from Xilong Scientific Co., Ltd. (Shantou, China). PDDA
(20 wt.%) was purchased from Aladdin Reagent Co., Ltd. (Shanghai, China). Glucose
was purchased from Damao Chemical Reagent Factory (Tianjin, China). Natural graphite
(3000 mesh) was purchased from Huatai Lubrication Seal Technology Co., Ltd. (Qingdao,
China). Nickel foam was purchased from Liyuan New Material Co., Ltd. (Changsha, China).
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2.2. Preparation of the Composites

32 mL of SDS (0.4 mol/L) and 1.6 mL H2SO4 (0.4 mol/L) were mixed into 283.2 mL
deionized water and heated to 95 ◦C for 15 min under continuous stirring. Then 3.2 mL of
KMnO4 (0.2 mol/L) solution was added and stirred for 60 min at 95 ◦C [46]. The product
was cooled to room temperature and then centrifuged at 5000 rpm. The centrifuged product
was freeze-dried after washing, which was MnO2.

400 mg of MnO2 above prepared was dispersed in 250 mL deionized water to be
exfoliated under ultrasonication (40 KHz, 240 W) for 3.5 h. Every 0.5 h, a stirring of
5 min was needed, and the ice bath environment was always maintained during the
ultrasonication process. After ultrasonication, the solution was centrifuged at 5800 rpm,
and the upper liquid was freeze-dried to obtain the exfoliated MnO2 nanosheets, denoted
as e-MnO2. The exfoliated MnO2 dispersion presents Tyndall effect through testing.

The tested Zeta potential of e-MnO2 was −20.2 mV. Positive charge was grafted onto
the surface of e-MnO2 by PDDA. 80 mg of e-MnO2 was dispersed, respectively, in 40 mL of
PDDA solution with different concentrations (0.5, 0.75 and 1 g/L) to obtain corresponding
e-MnO2 assembly solution, wherein the concentration of e-MnO2 is all 2 mg/mL. The above
e-MnO2 positively charged by different concentrations of PDDA were named e-MnO2-0.5,
e-MnO2-0.75 and e-MnO2-1, respectively. The Zeta potential of these e-MnO2 samples after
charge regulation is shown in Table S1 (Supplementary Information). It can be seen that
when the concentration of PDDA is 0.5 g/L, the Zeta potential of e-MnO2-0.5 reaches 27 mV.
When the concentration increases to 0.75 g/L, the Zeta potential of e-MnO2-0.75 increases
to 35.7 mV, whereas the concentration of PDDA increases to 1 g/L, the Zeta potential of
e-MnO2-1 decreases to 30.2 mV. It is mainly because when the amount of PDDA is low, it
cannot effectively prevent the coagulation effect of electrolytes on the sol system, but when
the amount of PDDA is too high, it will affect the amount of charge in the diffusion layer of
the micelle and also cause the decrease of the Zeta potential of the colloid system, which is
not beneficial to the stable existence of the sol [47].

GO was prepared using the modified Hummers method [48]. 40 mg of GO was
dispersed in 40 mL of deionized water to obtain GO assembly solution (1 mg/mL). The
tested Zeta potential of GO is −50 mV. As known, when the absolute value of the potential
exceeds 30 mV, stable dispersion can be formed [49]. Under continuous stirring, GO
assembly solution was added into e-MnO2-0.75 assembly solution slowly, also into e-MnO2-
0.5 and e-MnO2-1 dispersion for comparison, and then stirred for 40 min. During the
process, it could be observed that with the addition of GO, coagulation occurred. Positively
charged e-MnO2-0.75 and negatively charged GO completed electrostatic self-assembly.
After static settlement, the supernatant was removed, and then the product was filtrated
and freeze-dried, denoted as e-MnO2-0.5@GO, e-MnO2-0.75@GO and e-MnO2-1@GO,
respectively. The prepared e-MnO2-0.75@GO was dispersed in 40 mL of deionized water.
Under magnetic stirring, 100 µL NH3·H2O solution (25% w/w) was added to adjust pH
to ~9–10, then 640 mg glucose was added. After stirring for 15 min, the mixture was
transferred into a Teflon-lined stainless steel autoclave of 50 mL and reacted at 95 ◦C for
1.5 h in order to reduce GO to rGO. The precipitate was repeatedly washed and freeze-
dried to acquire e-MnO2-0.75@rGO composite. In the same way, e-MnO2-0.5@rGO and
e-MnO2-1@rGO were synthesized. The schematic synthesis procedure for the e-MnO2@rGO
composites is illustrated in Figure 1.

2.3. Characterization

The phase structures of the as-prepared materials were performed using the powder X-
ray diffraction (XRD, Rigaku D-max-2500/PC) with Cu Kα radiation (λ = 0.15406 nm) over a
range 2θ = 5–70◦. The elemental analysis was detected by X-ray photoelectron spectroscopy
(XPS, Thermo Fischer, ESCALAB Xi+) with Al Kα radiation (hγ = 1486.6 eV). The analysis of
chemical bond was completed via Fourier transform infrared spectroscopy (FTIR, Thermo
Nicolet iS10), and the preparation process of samples for FTIR is detailed in supplementary
information. The morphologies were characterized by scanning electron microscopy (SEM,
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Zeiss Supra55 and Hitachi Regulus SU8230), transmission electron microscopy (TEM,
Hitachi HT-7700) and atomic force microscopy (AFM, Bruker Multimode 8). The X-ray
energy disperse spectra (EDS) of the samples were recorded on Oxford Instruments (Ultim
Max170). The specific surface area was measured by Brunauer-Emmett-Teller (BET) method
(Micromeritics Tristar II 3020).
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2.4. Electrochemical Measurements

The as-prepared material was evenly mixed with acetylene black and polytetrafluo-
roethylene (PTFE, 60 wt.%) at a mass ratio of 80:15:5, and then a modicum of anhydrous
ethanol was added to make a paste, which was smeared on the surface of nickel foam, and
dried at 60 ◦C. The nickel foam loaded with active material was pressed under a pressure of
10 MPa, and then soaked in 6 M KOH solution for 24 h for activation. The electrochemical
performance was tested in a three-electrode system with 6M KOH aqueous as electrolyte.
The as-prepared active material was used as the working electrode, platinum plate electrode
as the counter electrode, and Hg/HgO electrode as the reference electrode. Galvanostatic
charge-discharge (GCD) tests were recorded on a charge-discharge instrument (Neware
CT-4008T, Shenzhen, China) with a potential range of approximately −0.2–0.5 V. Cyclic
voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out on a
CHI660E electrochemical workstation (Chenhua, Shanghai, China). The potential window
of CV tests was from −0.2 V to 0.5 V, and the frequency range of EIS was from 10−2 Hz to
105 Hz with the amplitude of 5 mV.

The asymmetric supercapacitor (ASC) device was assembled by using the as-prepared
e-MnO2-0.75@rGO as the positive electrode, graphene hydrogel (GH) as the negative
electrode and 6 M KOH as electrolyte. The preparation of GH is described in supplementary
information. Wherein the mass ratio of positive and negative electrodes was obtained by
the equation below [50]:

m+

m − =
C −

s ∆V −

C+
s ∆V+

(1)

where m is the mass of active materials (g), Cs is the specific capacitance of electrodes
(F·g−1) and ∆V is the potential window (V), and the sign of “+” and “−” represents the
positive and negative electrodes, respectively.

3. Results and Discussion
3.1. Structure and Morphology

XRD patterns of MnO2, e-MnO2, e-MnO2-0.5@rGO, e-MnO2-0.75@rGO and e-MnO2-
1@rGO are shown in Figure 2a. For MnO2, the diffraction peaks of 2θ at 12.3◦, 24.9◦, 37◦

and 65.5◦ can be indexed to birnessite-type MnO2 (δ-MnO2) (PDF# 43-1456), corresponding
to (001), (002), (200) and (020) crystal planes, respectively [51]. Simultaneously, rGO was
prepared using the same reduction process of the composite. Moreover, XRD patterns of
rGO and GO are displayed in Figure S1 (Supplementary Information). The XRD curve of
GO has a strong diffraction peak at 2θ = 11.8◦, corresponding to (001) crystal plane. After
reduced by hydrothermal reduction with glucose, a broad diffraction peak (002) appears
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at 2θ = 24.5◦, indicating the reduction of GO to rGO. The position of which is close to the
(002) plane of δ-MnO2, so there may be an overlap of (002) peaks for MnO2 and rGO [52].
Moreover, the existence of rGO in the composite will be further proved by subsequent
SEM, TEM and XPS characterization. According to the Bragg equation, the basal plane
spacing calculated from the (001) plane is about 0.72 nm. Compared with MnO2, there
is no obvious change for the position of the diffraction peaks of e-MnO2, indicating that
the phase structure of MnO2 has no change after ultrasonic exfoliation, but the intensity
of the diffraction peaks weakened, especially the peaks corresponding to (001) and (002)
planes. For the e-MnO2@rGO composites with different concentrations of PDDA (0.5,
0.75 and 1 g/L), they all present the diffraction peaks of δ-MnO2 only, which is probably
because MnO2 laminas covered on the surface of rGO [53]. Moreover, with the change of
the concentration, the XRD patterns of e-MnO2-0.5@rGO, e-MnO2-0.75@rGO and e-MnO2-
1@rGO have little change, suggesting no effect on the phase structure of the composites for
the charge regulation on the surface of e-MnO2. FTIR spectra were used to further represent
the structure of MnO2, e-MnO2 and e-MnO2-0.75@rGO, as shown in Figure 2b. The position
of the characteristic bands of MnO2, e-MnO2 and e-MnO2-0.75@rGO is basically similar.
The band at 3345 cm−1 corresponds to the stretching vibration of the O-H bond of interlayer
H2O, and the band at 1632 cm−1 is assigned to the stretching vibration of the H-O-H bond
of bound water. The band at 482 cm−1 is attributed to the stretching vibration of the Mn-O
bond [54]. The intensity of the band of e-MnO2 is a little stronger than MnO2, mainly
because more functional groups are exposed on the surface of the nanosheets.
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Figure 2. (a) XRD patterns of MnO2, e-MnO2, e-MnO2-0.5@rGO, e-MnO2-0.75@rGO and e-MnO2-
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The chemical composition and oxidation state of e-MnO2-0.75@rGO were conducted
by XPS, as shown in Figure 3. The existence of C, O and Mn elements is proved in the
e-MnO2-0.75@rGO composite (Figure 3a). Figure 3b shows C 1s core-level XPS spectrum,
where the peaks located at 284.8, 286.8 and 288.6 eV are assigned to C-C, C-O and O-C=O
bonds, respectively [55,56]. The spectrum of O 1s region (Figure 3c) could be deconvolved
into three peaks centered at 533.2, 531.7 and 529.4 eV, corresponding to C-O-H, H-O-H
and Mn-O bonds, respectively [57,58]. Wherein H-O-H and C-O-H bonds are attributed
to the adsorbed water molecules and surface functional groups of rGO in the composite,
respectively, and the Mn-O bond belongs to MnO2. For Mn 2p core-level, it could be
fitted into four peaks at 654.8 eV, 652.9 eV, 644.4 eV and 641.8 eV (Figure 3d), which are
assigned to Mn4+(2p1/2), Mn3+(2p1/2), Mn4+(2p3/2) and Mn3+(2p1/2), respectively [59,60].
The existence of Mn3+ is probably to maintain charge neutrality and oxygen vacancies in the
MnO2 lattice [60]. The XPS results further confirm that it has been synthesized successfully
of the e-MnO2-0.75@rGO composite.
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The SEM image of the as-prepared MnO2 is shown in Figure 4a. It exhibits a large
area and continuous lamellar morphology with the size of several hundred nanometers,
and the nanosheets cross with each other. AFM was used to represent the morphology
of e-MnO2. As shown in Figure 4b, smooth nanosheets are observed, which have a large
surface with a dimension of ~800 nm from the AFM image (Figure 4b, on the left), and
a thickness of ~1.2 nm from the height profile (Figure 4b, on the right). The theoretical
thickness of the single-layer MnO2 nanosheet is 0.52 nm [42], but it should be considered
the existence of hydration on both sides of the single-layer nanosheet [61]. So the thickness
of the obtained e-MnO2 nanosheet is approximately two layers. The morphologies of
e-MnO2@rGO composites under different concentrations of PDDA were characterized by
SEM. When the concentration of PDDA is 0.5 g/L, the nanosheets of e-MnO2-0.5@rGO are
stacked, and the structure is relatively compact (Figure 4c), indicating that the dispersed
lamellas failed to attract effectively and aggregated again. Although rGO could increase the
conductivity of the composite, the compact structure makes it difficult for the electrolyte
to enter the material. When the concentration of PDDA is 0.75 g/L, it can be observed
from Figure 4d that e-MnO2-0.75@rGO composite displays a layer-by-layer structure with
relatively uniform compounding, demonstrating that rGO and e-MnO2 were assembled
well. As can be seen from the TEM image of e-MnO2-0.75@rGO (Figure 4f), e-MnO2
lamellas are distributed on the surface of rGO nanosheets. These e-MnO2 lamellas interlace
with each other, and the material shows a relatively transparent state, indicating a less-layer
structure. For the novel layer-by-layer heterostructure, it has many advantages: Firstly,
the compact combination of e-MnO2 and rGO not only improves the conductivity of the
composite but also mitigates the powder dropping caused by the expansion of MnO2 during
the charge-discharge process. Furthermore, the cross-linking between e-MnO2 nanosheets
results in a large number of pores, which make ions in electrolytes easily accessible to the
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layers of the nanosheets, thus greatly increasing active sites. When the concentration of
PDDA increased to 1 g/L, e-MnO2-1@rGO presented a lamellar accumulation structure
(Figure 4e), indicating that e-MnO2 and rGO have not formed a good assembly. As shown
in Figure 4g of SEM mapping images, Mn, O and C elements distribute homogeneously
over the e-MnO2-0.75@rGO architecture, which further proves the existence and interlacing
distribution of MnO2 and rGO in the composite.
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image of e-MnO2-0.75@rGO and (g) SEM element mapping of e-MnO2-0.75@rGO.

The specific surface area and pore structure of the e-MnO2-0.75@rGO composite were
investigated by analyzing N2 adsorption-desorption isotherms and the pore size distribu-
tion curve, as shown in Figure 5. It shows a type IV isotherm with a hysteresis loop at the
relative pressure of ~0.6-1.0, indicating the existence of mesoporous structure in e-MnO2-
0.75@rGO (Figure 5a) [62]. The specific surface area of e-MnO2-0.75@rGO is 154.3 m2/g,
which is higher or comparable compared with that reported in the literature, such as
MnO2 nanowires/rGO (139.9 m2/g) [62], reduced graphene/MnO2 (120.2 m2/g) [63] and
high-reduced graphene (HRGO)/MnO2 (159.1 m2/g) [63]. For a comparison, adsorption-
desorption isotherms of MnO2 and rGO are displayed in Figure S2a,c (Supplementary
Information). The specific surface area of MnO2 and rGO is 78.7 and 207.8 m2/g, respec-
tively. It can be seen that the higher specific surface area of rGO plays a positive role in the
composite, and the specific surface area of e-MnO2-0.75@rGO composite is significantly
improved compared with that of pristine MnO2. Additionally, the pore size distribution
curve reveals that the average pore size calculated by Barrett-Joyner-Halenda (BJH) model
is concentrated from 20 to 40 nm (Figure 5b), demonstrating the mesoporous structure
of the as-prepared composite. While the pore size distribution of MnO2 and rGO is both
concentrated at ~3-4 nm (Supplementary Information, Figure S2b,d), so the porosity is
owing to the composite layer-by-layer architecture formed by MnO2 and rGO, which is
ascribed to the cross-linked structure constructed by self-assembly of the folded nanosheets.
High specific surface area and suitable pore size are favorable for ions transport during the
charge-discharge process.
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3.2. Electrochemical Performance

For the evaluation of electrochemical performance, CV curves at various scan rates
and GCD curves at various current densities were tested, as shown in Figure 6. Figure 6a–c
show CV curves of e-MnO2-0.5@rGO, e-MnO2-0.75@rGO and e-MnO2-1@rGO, respectively.
CV curves of e-MnO2@rGO obtained at different PDDA concentrations are similar in shape
and approximate in rectangle, indicating that the materials present good pseudocapaci-
tance characteristics. At the same scan rate, the CV curve of e-MnO2-0.75@rGO has the
maximum current response, demonstrating the maximum specific capacitance. Moreover,
GCD curves of e-MnO2-0.5@rGO, e-MnO2-0.75@rGO and e-MnO2-1@rGO are shown in
Figure 6d–f), respectively. These GCD curves at different current densities are close to sym-
metric triangles, indicating good reversibility. At the same current density, the GCD curve
of e-MnO2-0.75@rGO has the longest discharge time, also manifesting the highest specific
capacitance, which is consistent with the CV results. At a current density of 1 A/g, the spe-
cific capacitance of e-MnO2-0.5@rGO, e-MnO2-0.75@rGO and e-MnO2-1@rGO calculated
by the GCD curves is 236 F/g, 456 F/g and 298 F/g, respectively. Combined with the above
Zeta potential results after surface charge regulation, the higher the absolute value of Zeta
potential is, the more stable the system is, so the self-assembly effect is better. When the
concentration of PDDA was 0.5 g/L, due to the low concentration of the charge regulating
solution, the self-assembly via electrostatic gravity was not ideal, and the nanosheets were
aggregated and stacked, which reduced the number of the active sites of MnO2 and affected
its specific capacitance. However, Zeta potential at 1 g/L of PDDA decreased compared
with that at 0.75 g/L of PDDA, which did not achieve complete assembly. Furthermore,
the higher concentration of PDDA made the long molecular chain at the outer end cause
micelle expansion and sedimentation. While excess PDDA polymers mixed in the compos-
ite slowed down the agglomeration, it was bound to reduce the electrical conductivity of
the material, thus affecting the electrochemical performance, resulting in the decline of the
specific capacitance. The results correspond with SEM analysis.

For a comparison, CV curves at 5 mV/s and GCD curves at 1 A/g of MnO2, e-MnO2
and e-MnO2-0.75@rGO are displayed in Figure 7a,b). The CV curve area of e-MnO2 is larger
than that of pristine MnO2. The composite of e-MnO2-0.75@rGO shows the largest closed
area, indicating the highest specific capacitance among the three. The specific capacitance
of MnO2, e-MnO2 and e-MnO2-0.75@rGO is 268, 360 and 456 F/g, respectively, at a current
density of 1 A/g, calculated from the charge-discharge curve in Figure 7b. (The average
values and standard deviations were given in Figure S3 of supplementary information.)
Compared with pristine MnO2, e-MnO2 has a larger specific surface, and more active sites
are exposed to the electrolyte, so it has higher specific capacitance than pristine MnO2.
Furthermore, e-MnO2-0.75@rGO composite has the highest specific capacitance, 70% higher
than that of pristine MnO2, mainly because rGO and e-MnO2 were laminated in a layer-by-
layer structure, which improves the conductivity of the material and inhibits the stacking of
the nanosheets. According to Figure 7c, for the Nyquist plots of EIS, the intercept at the real
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axis represents the equivalent series resistance (Rs), including electrolyte resistance, contact
resistance between the electrode material and the current collector, or the internal resistance
of the material [64]. The diameter of the semi-arc intersecting at the real axis represents the
charge transfer resistance (Rct), the value of which is proportional to the Rct. As can be seen
in Figure 7c, the diameter of the semi-arc for e-MnO2-0.75@rGO is very small, indicating
lower Rct. The plots were fitted according to the equivalent circuit given in Figure 7d, and
the fitting results are also shown in Figure 7d. The Rs of MnO2 and e-MnO2-0.75@rGO
is 0.69 Ω and 0.46 Ω, respectively. Moreover, the corresponding Rct is 0.42 Ω and 0.26 Ω,
manifesting that the Rs and Rct of e-MnO2-0.75@rGO are both lower than pristine MnO2. It
is further demonstrated that e-MnO2-0.75@rGO composite with lamellar structure has good
conductivity, and the lamellar structure could contribute to the transfer of electrolyte ions,
while rGO is also conducive to reducing the internal resistance of the material. Figure 7e
shows the rate performance of MnO2, e-MnO2-0.5@rGO, e-MnO2-0.75@rGO and e-MnO2-
1@rGO at the current densities increasing from 1 to 10 A/g. Obviously, the capacitance
retention of e-MnO2-0.5@rGO, e-MnO2-0.75@rGO and e-MnO2-1@rGO are 16.9%, 44% and
34.6%, respectively, which is more superior than that of pristine MnO2 (10.6%), owing
to the role of rGO in stabilizing the architecture. In particular, the rate performance of
e-MnO2-0.75@rGO is significantly the best in the e-MnO2@rGO composites with different
concentrations of PDDA, and it has the highest specific capacitance at different current
densities of 1, 2, 5, 8 and 10 A/g. Figure 7f shows the cycle performance and coulombic
efficiency of the e-MnO2-0.75@rGO composite. It can be seen that the specific capacitance
retention remains at 98.7% of the initial value after 10,000 charge-discharge cycles at a
current density of 20 A/g, and coulombic efficiency is about 98.7%.
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The specific capacitance of e-MnO2-0.75@rGO composite synthesized by electrostatic
self-assembly combined with hydrothermal reduction after exfoliating MnO2 nanosheets
in this work was compared with the composites of MnO2 with graphene prepared via a
variety of methods reported in the literature [47,63–69]. As shown in Table 1, in terms of
the specific capacitance, the result of our work is comparable.
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Compared with pristine MnO2, the improved electrochemical performance of e-MnO2-
0.75@rGO composite is mainly due to the following reasons. Briefly, a layer-by-layer
heterostructure of e-MnO2-0.75@rGO facilitates the diffusion of electrolyte ions. Mean-
while, the architecture was developed by the self-assembly of graphene nanosheets and
e-MnO2 nanoflakes, which could effectively inhibit the restacking of e-MnO2 and graphene.
In addition, the intersecting e-MnO2 nanosheets formed a large number of pores, pro-
moting rapid faradaic reactions. Furthermore, the synergistic effect of components must
be mentioned. As a conductive layer in the heterostructure, rGO improves the electrical
conductivity of the e-MnO2-0.75@rGO composite, which is beneficial to the improvement
of the overall electrochemical performance [70,71].

Additionally, an asymmetric supercapacitor (ASC) device was assembled, and its
electrochemical performance was evaluated. The as-prepared e-MnO2-0.75@rGO was used
as the positive electrode, graphene hydrogel (GH) was used as the negative electrode and
6 M KOH was used as the electrolyte. Figure 8a shows CV curves of the GH negative
electrode and e-MnO2-0.75@rGO positive electrode at the scan rate of 5 mV/s. The potential
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window of the negative electrode is approximately −1–0 V, and that of the positive elec-
trode is approximately −0.2–0.5 V. Figure 8b displays CV curves under various potential
windows. It can be observed that CV curves remain a good rectangle when the voltage
windows are ~0–1.5 V and ~0–1.6 V; while the voltage rises to 1.7 V, slight polarization
occurs. Therefore, ~0–1.6 V was selected as the potential window of the ASC device. GCD
curves of e-MnO2-0.75@rGO//GH ASC at current densities of 1, 2, 5, 8 and 10 A/g with the
potential window of ~0–1.6 V are shown in Figure 8c. All the GCD curves display approxi-
mately symmetrical triangles, indicating good reversibility of the device. The calculated
specific capacitance could reach 94 F/g at 1 A/g and still keep 35 F/g at 10 A/g. The cycle
performance of the device is revealed in Figure 8d. The specific capacitance retention of
e-MnO2-0.75@rGO//GH ASC can reach 99.3% after 10,000 cycles at 20 A/g, demonstrating
good stability.

Table 1. A comparison of specific capacitance of e-MnO2-0.75@rGO in this work with other MnO2

composites in the previous literature.

Materials Preparation Methods Specific Capacitance References

MnO2 NF/RGO@Ni foam layer-by-layer (LBL) self-assembly 246 F/g (0.5 A/g) [47]

δ-MnO2/modified graphene Hydrothermal method 270 F/g (0.5 A/g) [63]

Na-MnO2/rGO Hydrothermal method 451 F/g (0.5 A/g) [64]

rGO/C/MnO2 Carbonization + Hydrothermal treatment 215.2 F/g (0.15 A/g) [65]

MnO2 and polyvinylpyrrolidone
(PVP)@rGO Electrodeposition 358 F/g (1 A/g) [66]

MnO2/rGO Sonochemical assisted synthesis 375 F/g (1 A/g) [67]

MnO2/nitrogen-doped graphene (NG) Hydrothermal method 305 F/g (5 mV/s) [68]

MnO2/graphene Hydrothermal method 255 F/g (0.5 A/g) [69]

MnO2/rGO Electrostatic self-assembly + Hydrothermal method 456 F/g (1 A/g) This work
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4. Conclusions

In summary, MnO2 nanoflakes with a thickness of ~1.2 nm and size of ~800 nm were
obtained by ultrasonic exfoliation and charge regulated by the appropriate concentration of
PDDA (0.75 g/L). Then MnO2 and GO nanosheets were self-assembled by electrostatic force.
The composite of e-MnO2-0.75@rGO with layer-by-layer heterostructure was acquired after
hydrothermal reduction by glucose. The composite exhibits excellent electrochemical
performance. In 6 M KOH electrolyte, the specific capacitance of e-MnO2-0.75@rGO is
456 F/g at a current density of 1 A/g, which is much higher than that of pristine MnO2
(268 F/g). Even at 10 A/g, the specific capacitance still retains 201 F/g, and the specific
capacitance retention is 98.7% after 10,000 charge-discharge cycles at 20 A/g. It shows that
rGO improves the conductivity of the material, and the layer structure formed by rGO
is conducive to the migration of ions in the electrolyte, so the specific capacitance of the
composite is greatly enhanced. The improved electrochemical performance is attributed to
the synergistic effect of architecture coupled with components, including the rate of ion
transport and faradaic reaction, plenty of active sites, less restacking as well as improved
electrical conductivity. Moreover, the assembled e-MnO2-0.75@rGO//GH ASC device
shows a specific capacitance of 94 F/g at 1 A/g with a potential window of ~0–1.6 V
and better cycle stability with capacitance retention of 99.3% over 10,000 cycles at 20 A/g.
We believe that this work may provide a reference for the synthesis of the composites
with layer-by-layer structure by self-assembly method and the basis for the design and
comparison of electrode materials for high-performance supercapacitors. Reasonable
design and construction of heterostructure have positive effects on the electrochemical
performance. In future studies, we need to further optimize the structure and improve the
electrochemical performance, as well as carry out researches on the interface mechanism of
the heterostructure so as to better exploit the potential of MnO2/rGO composites in the
application of supercapacitors.
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