Effects of the Structure of Benzenesulfonate-Based Draw Solutes on the Forward Osmosis Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of LCST-Type ILs
2.3. Characterization
2.4. FO Tests
3. Results and discussion
3.1. Synthesis and Characterization of LCST-Type ILs
3.2. Conductivity
3.3. Osmotic Pressure
3.4. Thermoresponsive Behavior
3.5. Water and Reverse Solute Fluxes
3.6. Recyclability Study of [TBP][DMBS]
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heidari, H.; Arabi, M.; Warziniack, T.; Sharvelle, S. Effects of urban development patterns on municipal water shortage. Front. Water 2021, 3, 694817. [Google Scholar] [CrossRef]
- Ghadouani, A.; Coggins, L.X. Science, technology and policy for water pollution control at the watershed scale: Current issues and future challenges. Phys. Chem. Earth 2011, 36, 335–341. [Google Scholar] [CrossRef]
- Bhuiyan, A.B.; Mokhtar, M.B.; Toriman, M.E.; Gasim, M.B.; Ta, G.C.; Elfithri, R.; Razman, M.R. The environmental risk and water pollution: A review from the river basins around the world. Am. Eurasian J. Sustain. Agric. 2013, 7, 126–136. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, P.; Zhao, Q.; Chen, N.; Lu, X. Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation. Desalination 2014, 348, 26–32. [Google Scholar] [CrossRef]
- Ghernaout, D. Increasing trends towards drinking water reclamation from treated wastewater. World J. Appl. Chem. 2018, 3, 1–9. [Google Scholar] [CrossRef]
- Zhao, S.; Zou, L.; Tang, C.Y.; Mulcahy, D. Recent developments in forward osmosis: Opportunities and challenges. J. Membr. Sci. 2012, 396, 1–21. [Google Scholar] [CrossRef]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, H.; Lee, J.; Sun, D.D. A low-energy forward osmosis process to produce drinking water. Energy Environ. Sci. 2011, 4, 2582–2585. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, W.; Wei, J.; Chong, T.H.; Wang, R.; Krantz, W.B.; Fane, A.G.; Hu, X. Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes. Environ. Sci. Water Res. Technol. 2015, 1, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y. A critical review on draw solutes development for forward osmosis. Desalination 2016, 391, 16–29. [Google Scholar] [CrossRef]
- Achilli, A.; Cath, T.Y.; Childress, A.E. Selection of inorganic-based draw solutions for forward osmosis applications. J. Membr. Sci. 2010, 364, 233–241. [Google Scholar] [CrossRef]
- Shon, H.K.; Phuntsho, S.; Zhang, T.C.; Surampalli, R.Y. Forward Osmosis; American Society of Civil Engineers: Reston, VA, USA, 2015. [Google Scholar]
- Yang, Y.; Chen, M.; Zou, S.; Yang, X.; Long, T.E.; He, Z. Efficient recovery of polyelectrolyte draw solutes in forward osmosis towards sustainable water treatment. Desalination 2017, 422, 134–141. [Google Scholar] [CrossRef]
- Mohammadifakhr, M.; Grooth, J.; de Roesink, H.D.; Kemperman, A.J. Forward osmosis: A critical review. Processes 2020, 8, 404. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh, A.; Zhou, J.L.; Navidpour, A.H.; Altaee, A. Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater. Bioresour. Technol. 2021, 330, 124998. [Google Scholar] [CrossRef] [PubMed]
- Sedghi, R.; Yassari, M.; Heidari, B. Thermo-responsive molecularly imprinted polymer containing magnetic nanoparticles: Synthesis, characterization and adsorption properties for curcumin. Colloids Surf. B Biointerfaces 2018, 162, 154–162. [Google Scholar] [CrossRef]
- Kim, J.; Chung, J.; Kang, H.; Yu, Y.A.; Choi, W.J.; Kim, H.J.; Lee, J. Thermo-responsive copolymers with ionic group as novel draw solutes for forward osmosis processes. Macromol. Res. 2014, 22, 963–970. [Google Scholar] [CrossRef]
- Pan, Z.; Guo, H.; Yu, H.; Wen, G.; Qu, F.; Huang, T.; He, J. Sewage sludge ash-based thermo-responsive hydrogel as a novel draw agent towards high performance of water flux and recovery for forward-osmosis. Desalination 2021, 512, 115147. [Google Scholar] [CrossRef]
- Zeweldi, H.G.; Bendoy, A.P.; Park, M.J.; Shon, H.K.; Kim, H.; Johnson, E.M.; Kim, H.; Lee, S.; Chung, W.; Nisola, G.M. Tetrabutylammonium 2,4,6-trimethylbenzenesulfonate as an effective and regenerable thermo-responsive ionic liquid drawing agent in forward osmosis for seawater desalination. Desalination 2020, 495, 114635. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, N.; Zhao, D.; Lu, X. Thermoresponsive magnetic nanoparticles for seawater desalination. ACS Appl. Mater. Interfaces 2013, 5, 11453–11461. [Google Scholar] [CrossRef]
- MingáLing, M. Facile synthesis of thermosensitive magnetic nanoparticles as “smart” draw solutes in forward osmosis. Chem. Commun. 2011, 47, 10788–10790. [Google Scholar] [CrossRef]
- Petrinic, I.; Stergar, J.; Bukšek, H. Superparamagnetic Fe3O4 CA nanoparticles and their potential as draw solution agents in forward osmosis. Nanomaterials 2021, 11, 2965. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Y.; Chong, J.Y.; Wang, R. Thermo-responsive nonionic amphiphilic copolymers as draw solutes in forward osmosis process for high-salinity water reclamation. Water Res. 2022, 221, 118768. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhu, X.X.; Luo, J.; Liu, H. Effects of substitution groups on the RAFT polymerization of N-alkylacrylamides in the preparation of thermosensitive block copolymers. Macromolecules 2007, 40, 6481–6488. [Google Scholar] [CrossRef]
- Persson, J.; Johansson, H.; Galaev, I.; Mattiasson, B.; Tjerneld, F. Aqueous polymer two-phase systems formed by new thermoseparating polymers. Bioseparation 2000, 9, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Inada, A.; Yumiya, K.; Takahashi, T.; Kumagai, K.; Hashizume, Y.; Matsuyama, H. Development of thermoresponsive star oligomers with a glycerol backbone as the draw solute in forward osmosis process. J. Membr. Sci. 2019, 574, 147–153. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, W.; Xie, R.; Ju, X.; Chu, L. Stimuli-responsive smart gating membranes. Chem. Soc. Rev. 2016, 45, 460–475. [Google Scholar] [CrossRef]
- Ou, R.; Zhang, H.; Simon, G.P.; Wang, H. Microfiber-polymer hydrogel monolith as forward osmosis draw agent. J. Membr. Sci. 2016, 510, 426–436. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Yao, J.; Simon, G.P.; Wang, H. Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem. Commun. 2011, 47, 1710–1712. [Google Scholar] [CrossRef]
- Bendoy, A.P.; Zeweldi, H.G.; Park, M.J. Thermo-responsive hydrogel with deep eutectic mixture co-monomer as drawing agent for forward osmosis. Desalination 2022, 542, 116067. [Google Scholar] [CrossRef]
- Ellis, S.N.; Cunningham, M.F.; Jessop, P.G. A forward osmosis hydrogel draw agent that responds to both heat and CO2. Desalination 2021, 510, 115074. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Y.; Chen, Z.; Zhu, J.; Chen, G.A. comprehensive review on forward osmosis water treatment: Recent advances and prospects of membranes and draw solutes. Int. J. Environ. Res. Public Health 2022, 19, 8215. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, Y.; Li, Z.; Huo, F.; Dong, Y.; He, H. Stimuli-responsive ionic liquids and the regulation of aggregation structure and phase behavior. Chin. J. Chem. 2021, 39, 729–744. [Google Scholar] [CrossRef]
- Tiago, G.A.; Matias, I.A.; Ribeiro, A.P.; Martins, L.M. Application of ionic liquids in electrochemistry—Recent advances. Molecules 2020, 25, 5812. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Singh, A.; Matsumi, N. Controlled phase behavior of thermally sensitive poly (N-isopropylacrylamide/ionic liquid) with embedded au nanoparticles. ACS Omega 2019, 4, 20923–20930. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kang, H.; Choi, Y.; Yu, Y.A.; Lee, J. Thermo-responsive oligomeric poly (tetrabutylphosphonium styrenesulfonate) s as draw solutes for forward osmosis (FO) applications. Desalination 2016, 381, 84–94. [Google Scholar] [CrossRef]
- Ju, C.; Park, C.; Kim, T.; Kang, S.; Kang, H. Thermo-responsive draw solute for forward osmosis process; poly (ionic liquid) having lower critical solution temperature characteristics. RSC Adv. 2019, 9, 29493–29501. [Google Scholar] [CrossRef] [Green Version]
- Rennie, A.J.; Martins, V.L.; Torresi, R.M.; Hall, P.J. Ionic liquids containing sulfonium cations as electrolytes for electrochemical double layer capacitors. J. Phys. Chem. C 2015, 119, 23865–23874. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Ho Row, K. Ionic liquid based on imidazolium cation to modify functional materials on separation of active compounds. J. Liq. Chromatogr. Relat. 2018, 41, 937–948. [Google Scholar] [CrossRef]
- Sanchez-Ramirez, N.; Martins, V.L.; Ando, R.A.; Camilo, F.F.; Urahata, S.M.; Ribeiro, M.C.; Torresi, R.M. Physicochemical properties of three ionic liquids containing a tetracyanoborate anion and their lithium salt mixtures. J. Phys. Chem. B 2014, 118, 8772–8781. [Google Scholar] [CrossRef]
- Hirose, D.; Kusuma, S.B.W.; Nomura, S.; Yamaguchi, M.; Yasaka, Y.; Kakuchi, R.; Takahashi, K. Effect of anion in carboxylate-based ionic liquids on catalytic activity of transesterification with vinyl esters and the solubility of cellulose. RSC Adv. 2019, 9, 4048–4053. [Google Scholar] [CrossRef]
- Bandrés, I.; Royo, F.M.; Gascón, I.; Castro, M.; Lafuente, C. Anion influence on thermophysical properties of ionic liquids: 1-butylpyridinium tetrafluoroborate and 1-butylpyridinium triflate. J. Phys. Chem. B 2010, 114, 3601–3607. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Durumeric, A.; Kashyap, H.K.; Kohanoff, J.; Margulis, C.J. Dynamics of excess electronic charge in aliphatic ionic liquids containing the bis (trifluoromethylsulfonyl) amide anion. J. Am. Chem. Soc. 2013, 135, 17528–17536. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, D.C.; Ho, C.; Chen, Y.; Chung, L.; Liang, T.; Chang, M.; Horng, R. Exploring the performance-affecting factors of monocationic and dicationic phosphonium-based thermoresponsive ionic liquid draw solutes in forward osmosis. Desalin. Water Treat. 2020, 200, 1–7. [Google Scholar] [CrossRef]
- Kohno, Y.; Arai, H.; Ohno, H. Dual stimuli-responsive phase transition of an ionic liquid/water mixture. ChemComm. 2011, 47, 4772–4774. [Google Scholar] [CrossRef]
- Ohno, H.; Yoshizawa-Fujita, M.; Kohno, Y. Functional design of ionic liquids: Unprecedented liquids that contribute to energy technology, bioscience, and materials sciences. Bull. Chem. Soc. Jpn. 2019, 92, 852–868. [Google Scholar] [CrossRef]
- Kohno, Y.; Arai, H.; Saita, S.; Ohno, H. Material design of ionic liquids to show temperature-sensitive LCST-type phase transition after mixing with water. Aust. J. Chem. 2011, 64, 1560–1567. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; McGinnis, R.L.; Elimelech, M. A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination 2005, 174, 1–11. [Google Scholar] [CrossRef]
- Ling, M.M.; Wang, K.Y.; Chung, T. Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. 2010, 49, 5869–5876. [Google Scholar] [CrossRef]
- Zhong, Y.; Feng, X.; Chen, W.; Wang, X.; Huang, K.; Gnanou, Y.; Lai, Z. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water. Environ. Sci. Technol. 2016, 50, 1039–1045. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.A.M.; Man, M.S.; Phang, S.N.; Syed, M.S.; Abdullah, S.B. Potential thermo-responsive ionic liquid as draw solution in forward osmosis application. J. Eng. Sci. Technol. 2019, 14, 1031–1042. Available online: http://jestec.taylors.edu.my/V14Issue2.htm (accessed on 20 April 2019).
- Wang, J.; Gao, S.; Tian, J.; Cui, F.; Shi, W. Recent developments and future challenges of hydrogels as draw solutes in forward osmosis process. Water 2020, 12, 692. [Google Scholar] [CrossRef]
- Peters, C.D.; Hankins, N.P. The synergy between osmotically assisted reverse osmosis (OARO) and the use of thermo-responsive draw solutions for energy efficient, zero-liquid discharge desalination. Desalination 2020, 493, 114630. [Google Scholar] [CrossRef]
- Li, D.; Wang, H. Smart draw agents for emerging forward osmosis application. J. Mater. Chem. A 2013, 1, 14049–14060. [Google Scholar] [CrossRef]
- Long, Q.; Jia, Y.; Li, J.; Yang, J.; Liu, F.; Zheng, J.; Yu, B. Recent advance on draw solutes development in forward osmosis. Processes 2018, 6, 165. [Google Scholar] [CrossRef] [Green Version]
- Ju, C.; Kang, H. Zwitterionic polymers showing upper critical solution temperature behavior as draw solutes for forward osmosis. RSC Adv. 2017, 7, 56426–56432. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, P. Unusual thermal phase transition behavior of an ionic liquid and poly (ionic liquid) in water with significantly different LCST and dynamic mechanism. Polym. Chem. 2014, 5, 5578–5590. [Google Scholar] [CrossRef]
- Kabiri, K.; Zohuriaan-Mehr, M.J.; Mirzadeh, H.; Kheirabadi, M. Solvent-, ion-and pH-specific swelling of poly (2-acrylamido-2-methylpropane sulfonic acid) superabsorbing gels. J. Polym. Res. 2010, 17, 203–212. [Google Scholar] [CrossRef]
- Zahid, I.M.; Kalaiyarasi, S.; Kumar, M.K.; Ganesh, T.; Jaisankar, V.; Kumar, R.M. Investigation on growth, optical and thermal properties of stilbazolium derivative crystal: 4-N, N-dimethylamino-4′-N′-methylstilbazolium 2,4-dimethylbenzenesulfonate. Mater. Sci. Pol. 2016, 34, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Bastos, P.D.; Santos, M.A.; Carvalho, P.J.; Crespo, J.G. Reverse osmosis performance on stripped phenolic sour water treatment–A study on the effect of oil and grease and osmotic pressure. J. Environ. Manag. 2020, 261, 110229. [Google Scholar] [CrossRef]
- Hoarfrost, M.L.; Segalman, R.A. Ionic conductivity of nanostructured block copolymer/ionic liquid membranes. Macromolecules 2011, 44, 5281–5288. [Google Scholar] [CrossRef]
- Seki, S.; Ohno, Y.; Kobayashi, Y.; Miyashiro, H.; Usami, A.; Mita, Y.; Tokuda, H.; Watanabe, M.; Hayamizu, K.; Tsuzuki, S. Imidazolium-based room-temperature ionic liquid for lithium secondary batteries: Effects of lithium salt concentration. J. Electrochem. Soc. 2007, 154, A173–A177. [Google Scholar] [CrossRef]
- Lin, Y.; Hossain, N.; Chen, C. Modeling dissociation of ionic liquids with electrolyte NRTL model. J. Mol. Liq. 2021, 329, 115524. [Google Scholar] [CrossRef]
- Kim, T.; Ju, C.; Park, C.; Kang, H. Polymer having dicationic structure in dumbbell shape for forward osmosis process. Polymers 2019, 11, 571. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Wang, Z.; Shi, L.; Jungsuttiwong, S.; Yuan, S. Ionic liquids for high performance lithium metal batteries. J. Energy Chem. 2021, 59, 320–333. [Google Scholar] [CrossRef]
- Sharick, S. Structure-Property Relationships of Imidazolium-Containing Polymer Systems: Homopolymers, Block Copolymers, and Block Copolymer/Ionic Liquid Mixtures; University of Pennsylvania: Philadelphia, PA, USA, 2015. [Google Scholar]
- Andriianova, A.N.; Biglova, Y.N.; Mustafin, A.G. Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv. 2020, 10, 7468–7491. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, G.; Sun, J.; Zhou, X.; Xie, P.; Zhang, R.; Fu, P. Studies on the Synthesis and Conductivity of a Novel Reactive Ladder-Like Poly (β-cyanoethylsilsesquioxane) and Poly [(β-cyanoethylsilsesquioxane)-co-(β-methylsilsesquioxane)]. Macromol. Chem. Phys. 2002, 203, 2351–2356. [Google Scholar] [CrossRef]
- Srikonda, S.; Kotamraj, P.; Barclay, B. Osmotic controlled drug delivery systems. In Design of Controlled Release Drug Delivery Systems; McGraw-Hill: Stockton, CA, USA, 2006. [Google Scholar]
- Abdullah, M.A.M.; Man, M.S.; Abdullah, S.B.; Saufi, S.M. A glance on thermo-responsive ionic liquids as draw solution in forward osmosis system. Desalin. Water Treat. 2020, 206, 165–176. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, B.; Xu, S.; Kong, J.; Ma, D.; Shon, H.K.; Yue, Q.; Liu, P. Polyelectrolyte-promoted forward osmosis process for dye wastewater treatment–exploring the feasibility of using polyacrylamide as draw solute. Chem. Eng. J. 2015, 264, 32–38. [Google Scholar] [CrossRef]
- Mounir, M.; Gadallah, H.; Ali, H.M.; Souaya, E.R.; Azab, A.A. Ferric hydroacid & diamine complex as draw solute for forward osmosis (FO) desalination processes. Chem. Eng. Technol. 2021, 5, 100316. [Google Scholar] [CrossRef]
- Ding, W.; Li, Y.; Bao, M.; Zhang, J.; Zhang, C.; Lu, J. Highly permeable and stable forward osmosis (FO) membrane based on the incorporation of Al2O3 nanoparticles into both substrate and polyamide active layer. RSC Adv. 2017, 7, 40311–40320. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.H.; Lee, J.; Lee, Y.G.; Park, M.; Lee, S.; Yang, D.R.; Kim, J.H. Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions. Desalination 2011, 277, 83–91. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; Elimelech, M. Modeling water flux in forward osmosis: Implications for improved membrane design. AIChE J. 2007, 53, 1736–1744. [Google Scholar] [CrossRef]
- Wang, K.Y.; Chung, T.; Qin, J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process. J. Membr. Sci. 2007, 300, 6–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Cho, Y.; Kang, H. Effects of the Structure of Benzenesulfonate-Based Draw Solutes on the Forward Osmosis Process. Membranes 2022, 12, 1067. https://doi.org/10.3390/membranes12111067
Yang D, Cho Y, Kang H. Effects of the Structure of Benzenesulfonate-Based Draw Solutes on the Forward Osmosis Process. Membranes. 2022; 12(11):1067. https://doi.org/10.3390/membranes12111067
Chicago/Turabian StyleYang, DaEun, Yeonsu Cho, and Hyo Kang. 2022. "Effects of the Structure of Benzenesulfonate-Based Draw Solutes on the Forward Osmosis Process" Membranes 12, no. 11: 1067. https://doi.org/10.3390/membranes12111067
APA StyleYang, D., Cho, Y., & Kang, H. (2022). Effects of the Structure of Benzenesulfonate-Based Draw Solutes on the Forward Osmosis Process. Membranes, 12(11), 1067. https://doi.org/10.3390/membranes12111067