Water Molecular Dynamics in the Porous Structures of Ultrafiltration/Nanofiltration Asymmetric Cellulose Acetate–Silica Membranes
Abstract
:1. Introduction
2. Experimental Section
2.1. Membrane Preparation and Characterization
2.2. Methods
3. Results and Discussion
3.1. Membrane Characterization
3.2. 1H NMR Spectroscopy
3.3. 1H NMR Diffusometry
3.4. 1H NMR Relaxometry
3.4.1. Raw Data and Theoretical Models
- Rotational diffusion (Rot):The model by Bloembergen, Purcell and Pound, better known as the BPP model, was applied in order to describe rotations of water molecules in the membranes [31,32]. The contribution of this mechanism to the NMR dispersion curves of water H spins is given by Equation (4).The prefactor depends on the effective intramolecular distance between H nuclear spins, ( Å in the case of the water molecule), via Expression (5), which can easily be calculated for the water molecule:
- Translational Diffusion (SD):Self-diffusion of water molecules may be accounted for using the Torrey model [33,34]. Torrey assumed that molecules have equal probabilities of jumping in any direction from an initial state into another, reaching a random jump-like solution. The associated longitudinal relaxation rate frequency dependence is described by Equation (6).Parameter n is the H spin density, and d is the average intermolecular interspin distance. , the translational diffusion correlation time, , the mean square jump distance, and the diffusion coefficient, D, are related by the following equation.
- Rotations mediated by translational displacements (RMTD):The water motion in the confined system gives rise to a relaxation mechanism associated with rotations mediated by translational displacements. This model describes the movement of water molecules near the pores’ walls and, therefore, is related to the interaction of those molecules with the membranes’ surfaces. The contribution of this model to the longitudinal relaxation rate is given by [35,36] the following:This contribution exhibits one high cut-off frequency, , and one low cut-off frequency, , which are, respectively, associated with the largest and smallest possible translational relaxation modes and, therefore, to the smallest and largest possible average displacements, respectively: and , where D is the diffusion coefficient and l is the average displacement. Exponent p can vary between 0.5 and 1, where p = 0.5 corresponds to a situation where there is an isotropic distribution of coupled rotations and self-diffusion motions along the pore/channel’s surfaces, while for p = 1, there is a preferential orientation of the rotations/translations relaxation modes along the constraining surfaces. The parameter is inversely proportional to the square root of the diffusion coefficient and to the range of wave numbers related to the motional modes induced by the surface, . This parameter is proportional to the square of the fraction of molecules interacting with the surface and to the square of the order parameter, representing the long time limit residual correlation of restricted tumbling.
3.4.2. Model Fitting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NMR | Nuclear magnetic resonance; |
1H | Proton, hydrogen-1; |
PGSE | Pulse Gradient Stimulated Echo; |
Rot | Rotations; |
SD | Self-diffusion; |
RMTD | Rotations Mediated by Translational Displacements; |
CA | Cellulose acetate; |
NF | Nanofiltration; |
UF | Ultrafiltration; |
CA/SiO2 | Cellulose acetate/silica; |
G20 | Surfactant conditioning with an aq. sol. of glycerol 20 vol.%; |
GT | Surfactant conditioning with an aq. sol. of glycerol 20 vol.% and triton x-100 4 vol.%. |
Appendix A
Appendix A.1. 1 H NMR Spectra Obtained from the Relaxometry Experiments Performed at 7T
References
- Hansen, E.W.; Fonnum, G.; Weng, E. Pore Morphology of Porous Polymer Particles Probed by NMR Relaxometry and NMR Cryoporometry. J. Phys. Chem. B 2005, 109, 24295–24303. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Kumar, H.; Dasgupta, C.; Maiti, P.K. Confined Water: Structure, Dynamics, and Thermodynamics. Accounts Chem. Res. 2017, 50, 2139–2146. [Google Scholar] [CrossRef] [PubMed]
- Mietner, J.B.; Brieler, F.J.; Lee, Y.J.; Fröba, M. Properties of Water Confined in Periodic Mesoporous Organosilicas: Nanoimprinting the Local Structure. Angew. Chem. Int. Ed. 2017, 56, 12348–12351. [Google Scholar] [CrossRef] [PubMed]
- Stamatialis, D.F.; Dias, C.R.; de Pinho, M.N. Structure and Permeation Properties of Cellulose Esters Asymmetric Membranes. Biomacromolecules 2000, 1, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wei, M.; Zhang, X.; Song, Y.; Zhou, W.; Wang, Y. How Pore Hydrophilicity Influences Water Permeability? Research 2019, 2019, 2581241. [Google Scholar] [CrossRef] [Green Version]
- Silletta, E.V.; Velasco, M.I.; Gomez, C.G.; Strumia, M.C.; Stapf, S.; Mattea, C.; Monti, G.A.; Acosta, R.H. Enhanced Surface Interaction of Water Confined in Hierarchical Porous Polymers Induced by Hydrogen Bonding. Langmuir 2016, 32, 7427–7434. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.; de Pinho, M.N. An ATR-FTIR study of water in cellulose acetate membranes prepared by phase inversion. J. Membr. Sci. 1995, 106, 245–257. [Google Scholar] [CrossRef]
- Dias, C.R.; Rosa, M.J.; de Pinho, M.N. Structure of water in asymmetric cellulose ester membranes—And ATR-FTIR study. J. Membr. Sci. 1998, 138, 259–267. [Google Scholar] [CrossRef]
- Stamatialis, D.F.; Dias, C.R.; Norberta De Pinho, M. Atomic force microscopy of dense and asymmetric cellulose-based membranes. J. Membr. Sci. 1999, 160, 235–242. [Google Scholar] [CrossRef]
- Ong, R.; Chung, T.; Helmer, B.; De Wit, J. Characteristics of water and salt transport, free volume and their relationship with the functional groups of novel cellulose esters. Polymer 2013, 54, 4560–4569. [Google Scholar] [CrossRef]
- del Gaudio, I.; Hunter-Sellars, E.; Parkin, I.P.; Williams, D.; Da Ros, S.; Curran, K. Water sorption and diffusion in cellulose acetate: The effect of plasticisers. Carbohydr. Polym. 2021, 267, 118185. [Google Scholar] [CrossRef] [PubMed]
- Ioan, S.; Necula, A.M.; Stoica, I.; Olaru, N.; Olaru, L.; Ioanid, G.E. Surface Properties of Cellulose Acetate. High Perform. Polym. 2010, 22, 598–608. [Google Scholar] [CrossRef]
- Mendes, G.; Faria, M.; Carvalho, A.; Gonçalves, M.C.; de Pinho, M.N. Structure of water in hybrid cellulose acetate-silica ultrafiltration membranes and permeation properties. Carbohydr. Polym. 2018, 189, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.; Moreira, C.; Eusébio, T.; Brogueira, P.; de Pinho, M.N. Hybrid flat sheet cellulose acetate/silicon dioxide ultrafiltration membranes for uremic blood purification. Cellulose 2020, 27, 3847–3869. [Google Scholar] [CrossRef]
- da Silva, M.P.; Beira, M.J.; Nogueira, I.D.; Sebastião, P.J.; Figueirinhas, J.L.; de Pinho, M.N. Tailoring the Selective Permeation Properties of Asymmetric Cellulose Acetate/Silica Hybrid Membranes and Characterisation of Water Dynamics in Hydrated Membranes by Deuterium Nuclear Magnetic Resonance. Membranes 2022, 12, 559. [Google Scholar] [CrossRef]
- Beira, M.J.; Silva, M.P.; Condesso, M.; Cosme, P.; Almeida, P.L.; Corvo, M.C.; Sebastião, P.J.; Figueirinhas, J.L.; de Pinho, M.N. Molecular order and dynamics of water in hybrid cellulose acetate–silica asymmetric membranes. Mol. Phys. 2019, 117, 975–982. [Google Scholar] [CrossRef]
- de Almeida Martins, J.P.; Chávez, F.V.; Sebastião, P.J. NMR molecular dynamics study of chromonic liquid crystals Edicol Sunset Yellow doped with salts. Magn. Reson. Chem. 2014, 52, 540–545. [Google Scholar] [CrossRef]
- Overbeck, V.; Appelhagen, A.; Rößler, R.; Niemann, T.; Ludwig, R. Rotational correlation times, diffusion coefficients and quadrupolar peaks of the protic ionic liquid ethylammonium nitrate by means of 1H fast field cycling NMR relaxometry. J. Mol. Liq. 2021, 322, 114983. [Google Scholar] [CrossRef]
- Calucci, L.; Pizzanelli, S.; Mandoli, A.; Birczyński, A.; Lalowicz, Z.T.; De Monte, C.; Ricci, L.; Bronco, S. Unravelling Main- and Side-Chain Motions in Polymers with NMR Spectroscopy and Relaxometry: The Case of Polyvinyl Butyral. Polymers 2021, 13, 2686. [Google Scholar] [CrossRef]
- Ates, E.G.; Domenici, V.; Florek-Wojciechowska, M.; Gradišek, A.; Kruk, D.; Maltar-Strmečki, N.; Oztop, M.; Ozvural, E.B.; Rollet, A.L. Field-dependent NMR relaxometry for Food Science: Applications and perspectives. Trends Food Sci. Technol. 2021, 110, 513–524. [Google Scholar] [CrossRef]
- Ordikhani Seyedlar, A.; Stapf, S.; Mattea, C. Nuclear magnetic relaxation and diffusion study of the ionic liquids 1-ethyl- and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in porous glass. Magn. Reson. Chem. 2019, 57, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Zavada, T.; Kimmich, R. The anomalous adsorbate dynamics at surfaces in porous media studied by nuclear magnetic resonance methods. The orientational structure factor and Lévy walks. J. Chem. Phys. 1998, 109, 6929–6939. [Google Scholar] [CrossRef]
- Carvalho, A.; Sebastiao, P.J.; Fonseca, I.; Matos, J.; Goncalves, M.C. Silica and silica organically modified nanoparticles: Water dynamics in complex systems. Microporous Mesoporous Mater. 2015, 217, 102–108. [Google Scholar] [CrossRef]
- Kumar, A.; Cruz, C.; Figueirinhas, J.L.; Sebastião, P.J.; Trindade, A.C.; Fernandes, S.N.; Godinho, M.H.; Fossum, J.O. Water Dynamics in Composite Aqueous Suspensions of Cellulose Nanocrystals and a Clay Mineral Studied through Magnetic Resonance Relaxometry. J. Phys. Chem. B 2021, 125, 12787–12796. [Google Scholar] [CrossRef]
- Kunst, B.; Sourirajan, S. An approach to the development of cellulose acetate ultrafiltration membranes. J. Appl. Polym. Sci. 1974, 18, 3423–3434. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Sol-Gel Science; Academic Press: San Diego, CA, USA, 1990. [Google Scholar] [CrossRef]
- Vos, K.D.; Burris, F.O. Drying cellulose acetate reverse osmosis membranes. Ind. Eng. Chem. Prod. Res. Dev. 1969, 8, 84–89. [Google Scholar] [CrossRef]
- Sousa, D.; Domingos Marques, G.; Cascais, J.M.; Sebastião, P.J. Desktop fast-field cycling nuclear magnetic resonance relaxometer. Solid State NMR 2010, 38, 36–43. [Google Scholar] [CrossRef]
- Sebastião, P.J. The art of model fitting to experimental results. Eur. J. Phys. 2014, 35, 015017. [Google Scholar] [CrossRef]
- James, F. MINUIT Function Minimization and Error Analysis. In MINUIT Function Minimization and Error Analysis. Reference Manual Version 94.1; CERN: Geneva, Switzerland, 1994. [Google Scholar]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation effect in nuclear magnetic resonance absorption. Phys. Rev. 1948, 73, 679–712. [Google Scholar] [CrossRef] [Green Version]
- Abragam, A. The Principles of Nuclear Magnetism; Clarendon Press: Oxford, UK, 1961. [Google Scholar]
- Torrey, H.C. Nuclear Spin Relaxation By Translational Diffusion. Phys. Rev. 1953, 92, 962–969. [Google Scholar] [CrossRef]
- Harmon, J.F.; Muller, B.H. Nuclear Spin Relaxation by Translational Diffusion in Liquid Ethane. Phys. Rev. 1969, 182, 400–410. [Google Scholar] [CrossRef]
- Sebastião, P.J.; Sousa, D.; Ribeiro, A.C.; Vilfan, M.; Lahajnar, G.; Seliger, J.; Žumer, S. Field-cycling NMR relaxometry of a liquid crystal above TNI in mesoscopic confinement. Phys. Rev. E 2005, 72, 061702. [Google Scholar] [CrossRef] [PubMed]
- Vilfan, M.; Apih, T.; Sebastião, P.J.; Lahajnar, G.; Žumer, S. Liquid crystal 8CB in random porous glass: NMR relaxometry study of molecular diffusion and director fluctuations. Phys. Rev. E 2007, 76, 051708. [Google Scholar] [CrossRef] [PubMed]
- Sebastiao, P.J.O.; Beira, M.J.; Cordeiro, R.M.O.; Kumar, A.; Fernandes, J.F.; Ferraz, A.M.P.; Gonçalves, L.N. The art of fitting ordinary differential equations models to experimental results. Eur. J. Phys. 2022, 43, 035807. [Google Scholar] [CrossRef]
Casting Solution Composition (wt.%) | |||
---|---|---|---|
Membrane | CA/SiO2-22 | CA/SiO2-30 | CA/SiO2-34 |
CA | 16.4 | 16.4 | 16.4 |
Formamide | 21.3 | 29.0 | 32.9 |
Acetone | 58.8 | 51.1 | 47.2 |
TEOS (SiO2 precursor) | 3.0 | 3.0 | 3.0 |
H2O | 0.5 | 0.5 | 0.5 |
HNO3 | 4 drops (pH ≈ 2) | 4 drops (pH ≈ 2) | 4 drops (pH ≈ 2) |
Casting Conditions | |||
Temperature of casting solution (°C) | 20–25 | ||
Temperature of casting atmosphere (°C) | 20–25 | ||
Relative humidity of casting atmosphere (%) | 40–50 | ||
Solvent evaporation time (min) | 0.5 | ||
Gelation medium | Ice-cold deionised water (2 h) |
Membrane | Hydraulic Permeability, | Molecular Weight Cut-Off, | |
---|---|---|---|
L (kg h m bar) | MWCO (kDa) | ||
CA/SiO-22 | G20 | 3.5 ± 0.2 | 4 |
GT | 2.2 ± 0.2 | 3 | |
CA/SiO-30 | G20 | 38 ± 2 | 14 |
GT | 40 ± 3 | 29 | |
CA/SiO-34 | G20 | 81 ± 4 | 35 |
GT | 62 ± 4 | 21 |
CA/SiO-22 | CA/SiO-30 | CA/SiO-34 | ||||
---|---|---|---|---|---|---|
G20 | GT | G20 | GT | G20 | GT | |
More confined population ratio, q | 0.83 | 0.40 | 0.24 | 0.40 | 0.35 | 0.50 |
Membrane | ( /s) | ( /s) | ( /s) | |
---|---|---|---|---|
CA/SiO-22 | G20 | 0.09 | 0.11 | – |
GT | 1.40 | 0.97 | ||
CA/SiO-30 | G20 | 6.50 | 9.50 | 0.38 |
GT | 9.50 | 9.60 | 1.10 | |
CA/SiO-34 | G20 | 5.50 | 10.0 | 2.20 |
GT | 6.90 | 16.0 | 3.10 |
Parameters | -22 | -30 | -34 | ||||
---|---|---|---|---|---|---|---|
G20 | GT | G20 | GT | G20 | GT | ||
) | 1.08 | 1.08 | 1.08 | 1.08 | |||
s) | 13 | 5 | 6 | 6 | 5 | ||
/s) | 0.09 | 1.40 | 6.50 | 9.50 | 5.50 | 6.90 | 21 |
r(Å) | 3.0 | 3.0 | 3.0 | 3.0 | |||
d(Å) | 2.7 | 2.7 | 2.7 | 2.7 | |||
q | 0.83 | 0.40 | 0.24 | 0.40 | 0.35 | 0.50 | – |
/s) | 0.11 | 0.97 | 9.50 | 9.60 | 10.0 | 16.0 | – |
) | 27 | 18 | 5.8 | 3.7 | 3.8 | 2.9 | – |
m) | 5.3 | 5.3 | 13 | 12 | 10 | 16 | – |
p | 0.56 | 0.51 | 0.50 | 0.50 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, J.; da Silva, M.P.; Beira, M.J.; Corvo, M.C.; Almeida, P.L.; Sebastião, P.J.; Figueirinhas, J.L.; de Pinho, M.N. Water Molecular Dynamics in the Porous Structures of Ultrafiltration/Nanofiltration Asymmetric Cellulose Acetate–Silica Membranes. Membranes 2022, 12, 1122. https://doi.org/10.3390/membranes12111122
Cunha J, da Silva MP, Beira MJ, Corvo MC, Almeida PL, Sebastião PJ, Figueirinhas JL, de Pinho MN. Water Molecular Dynamics in the Porous Structures of Ultrafiltration/Nanofiltration Asymmetric Cellulose Acetate–Silica Membranes. Membranes. 2022; 12(11):1122. https://doi.org/10.3390/membranes12111122
Chicago/Turabian StyleCunha, João, Miguel P. da Silva, Maria J. Beira, Marta C. Corvo, Pedro L. Almeida, Pedro J. Sebastião, João L. Figueirinhas, and Maria Norberta de Pinho. 2022. "Water Molecular Dynamics in the Porous Structures of Ultrafiltration/Nanofiltration Asymmetric Cellulose Acetate–Silica Membranes" Membranes 12, no. 11: 1122. https://doi.org/10.3390/membranes12111122
APA StyleCunha, J., da Silva, M. P., Beira, M. J., Corvo, M. C., Almeida, P. L., Sebastião, P. J., Figueirinhas, J. L., & de Pinho, M. N. (2022). Water Molecular Dynamics in the Porous Structures of Ultrafiltration/Nanofiltration Asymmetric Cellulose Acetate–Silica Membranes. Membranes, 12(11), 1122. https://doi.org/10.3390/membranes12111122