Electrodialysis for the Concentration of Lithium-Containing Brines—An Investigation on the Applicability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Plant and Set-Up
- Effective membrane area (Aeff) = 64 cm2;
- Spacer thickness (dspacer) = 0.45 mm;
- 10 cell pairs, including 9 PcSK membranes, 10 PcSA membranes, and 2 PcMPE membranes (next to the electrodes);
- A plate-and-frame heat exchanger connected to a thermostat kept the solution temperatures at 21 ± 0.5 °C.
2.2. Measurement
2.3. Materials Used
- Lithium chloride (≥98.5%, pure), Carl Roth GmbH + Co. KG;
- Lithium hydroxide, as lithium hydroxide monohydrate (≥56.5% LiOH), Carl Roth GmbH + Co. KG;
- Sodium sulfate (≥99%, anhydrous), Carl Roth GmbH + Co. KG;
- Sodium chloride (>99.8%), Carl Roth GmbH + Co. KG;
- Potassium chloride (>99.5%), Carl Roth GmbH + Co. KG;
- Calcium chloride (anhydrous);
- Demineralized water (reverse osmosis-based water supply at TH Köln).
2.4. Operation of the Test Plant
2.5. Correlation of Measured Values with Concentration
2.6. Experimental Investigation Using Synthetic Solutions
2.7. Quality Parameters
3. Results
3.1. Pure Lithium Solutions
3.1.1. Long-Term Behavior of LiCl Solutions during Electrodialysis
3.1.2. Comparison of the Behavior of Synthetic LiOH and LiCl Solutions
3.1.3. Energy Demand
3.2. Comparison of the Behavior of LiCl, NaCl, KCl, and CaCl2 Solutions during Electrodialysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Projection of Total Worldwide Lithium Demand from 2018 to 2025 (in 1,000 Metric Tons of Lithium Carbonate Equivalent). Available online: https://www.statista.com/statistics/452025/projected-total-demand-for-lithium-globally/ (accessed on 6 October 2020).
- Talens Peiró, L.; Villalba Méndez, G.; Ayres, R.U. Lithium: Sources, Production, Uses, and Recovery Outlook. JOM 2013, 65, 986–996. [Google Scholar] [CrossRef] [Green Version]
- Trócoli, R.; Erinmwingbovo, C.; La Mantia, F. Optimized Lithium Recovery from Brines by Using an Electrochemical Ion-Pumping Process Based on λ-MnO2 and Nickel Hexacyanoferrate. Chem. Electro. Chem. 2017, 4, 143–149. [Google Scholar] [CrossRef]
- Lithium: Definitions, Mineralogy and Deposits. Available online: https://ftp.bgs.ac.uk/pubload/MineralsUK/Lithium_Profile/Lithium_profile_July2016.pdf (accessed on 13 October 2020).
- Lithium: Informationen zur Nachhaltigkeit. Available online: https://www.deutsche-rohstoffagentur.de/DE/Gemeinsames/Produkte/Downloads/Informationen_Nachhaltigkeit/lithium.pdf?__blob=publicationFile&v=4 (accessed on 28 December 2020).
- Investor Presentation: Lithium Teach-in. Available online: https://investors.albemarle.com/static-files/7a54ca22-1d22-4715-b889-523605c6b0cc (accessed on 29 December 2020).
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-based Technologies for Lithium Recovery from Water Lithium Resources: A review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Z. Recovery of Lithium from Spent Lithium-ion Batteries Using Precipitation and Electrodialysis Techniques. Sep. Purif. Technol. 2018, 206, 335–342. [Google Scholar] [CrossRef]
- Kalmykov, D.; Makaev, S.; Golubev, G.; Eremeev, I.; Vasilevsky, V.; Song, J.; He, T.; Volkov, A. Operation of Three-Stage Process of Lithium Recovery from Geothermal Brine: Simulation. Membranes 2021, 11, 175. [Google Scholar] [CrossRef]
- Melin, T.; Rautenbach, R. Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, 3rd ed.; Springer: Berlin, Germany, 2007; ISBN 3-540-00071-2. [Google Scholar]
- Mir, N.; Bicer, Y. Integration of electrodialysis with renewable energy sources for sustainable freshwater production: A review. J. Environ. Manag. 2021, 289, 112496. [Google Scholar] [CrossRef]
- Hoshino, T. Development of Technology for Recovering Lithium from Seawater by Electrodialysis Using Ionic Liquid Membrane. Fusion Eng. Des. 2013, 88, 2956–2959. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, P.; Qi, P.; Gao, C. Adsorption and Desorption Properties of Li+ on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane. Chem. Eng. J. 2014, 235, 340–348. [Google Scholar] [CrossRef]
- Chang, I.; Jiang, Y.; Shiu, J.; Lin, J. Process for Producing Lithium Concentrate from Brine or Seawater. U.S. Patent 6764584B2 10/274956, 20 July 2004. [Google Scholar]
- Kawata, M.; Tanaka, H.; Mitsuhashi, K.; Kawarabuki, R.; Yamamoto, Y.; Kamiyama, K.; Moriya, A.; Sakai, N. Method for Producing Lithium Carbonate. U.S. Patent 20130251610A1, 13/688350, 26 September 2013. [Google Scholar]
- Zhang, Y.; Wang, L.; Sun, W.; Hu, Y.; Tang, H. Membrane Technologies for Li+/Mg2+ Separation from Salt-lake Brines and Seawater: A Comprehensive Review. J. Ind. Eng. Chem. 2020, 81, 7–23. [Google Scholar] [CrossRef]
- Hoshino, T. Preliminary Studies of Lithium Recovery Technology from Seawater by Electrodialysis Using Ionic Liquid Membrane. Desalination 2013, 317, 11–16. [Google Scholar] [CrossRef]
- Hoshino, T. Innovative Lithium Recovery Technique from Seawater by Using World-first Dialysis with a Lithium Ionic Superconductor. Desalination 2015, 359, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Bertau, M.; Martin, G. Process for the Electrodialytic Production of Lithium Hydroxide from Contaminated Lithium-Containing Aqueous Diluents. Patent DE102015203395A1, 25 August 2016. [Google Scholar]
- Bourassa, G.; Pearse, G.; Mackie, S.C.; Gladkovas, M.; Symons, P.; Genders, D.J.; Magnan, J. Processes for Preparing Lithium Hydroxide. Patent WO2013159194A1 PCT/CA2013/000398, 31 October 2013. [Google Scholar]
- Brückner, L.; Frank, J.; Elwert, T. Industrial Recycling of Lithium-Ion Batteries—A Critical Review of Metallurgical Process Routes. Metals 2020, 10, 1107. [Google Scholar] [CrossRef]
- Mossali, E.; Picone, N.; Gentilini, L.; Rodrìguez, O.; Pérez, J.M.; Colledani, M. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. J. Environ. Manag. 2020, 264, 110500. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, A.; Yamashita, Y.; Nagasawa, H.; Yamasaki, A.; Yanagisawa, Y. Separation of Lithium and Cobalt from Waste Lithium-ion Batteries via Bipolar Membrane Electrodialysis Coupled with Chelation. Sep. Purif. Technol. 2013, 113, 33–41. [Google Scholar] [CrossRef]
- McCleskey, R.B. Electrical Conductivity of Electrolytes Found In Natural Waters from (5 to 90) °C. J. Chem. Eng. Data 2011, 56, 317–327. [Google Scholar] [CrossRef]
- Kurzweil, P. Angewandte Elektrochemie: Grundlagen, Messtechnik, Elektroanalytik, Energiewandlung, Technische Verfahren, 1st ed.; Springer: Wiesbaden, Germany, 2020; ISBN 978-3-658-32420-9. [Google Scholar]
- van Linden, N.; Spanjers, H.; van Lier, J.B. Application of Dynamic Current Density for Increased Concentration Factors and Reduced Energy Consumption for Concentrating Ammonium by Electrodialysis. Water Res. 2019, 163, 114856. [Google Scholar] [CrossRef]
- Strathmann, H. Electrodialysis, a Mature Technology with a Multitude of New Applications. Desalination 2010, 264, 268–288. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: Burlington, MA, USA, 2011; pp. 71–90. ISBN 978-0-12-375182-9. [Google Scholar]
- Marino, M.G.; Melchior, J.; Wohlfarth, P.A.; Kreuer, K.D. Hydroxide, Halide and Water Transport in a Model Anion Exchange Membrane. J. Membr. Sci. 2014, 464, 61–71. [Google Scholar] [CrossRef]
- Han, L.; Galier, S.; Roux-de Balmann, H. Ion Hydration Number and Electro-osmosis During Electrodialysis of Mixed Salt Solution. Desalination 2015, 373, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Stamp, A.; Lang, D.J.; Wäger, P.A. Environmental Impacts of a Transition Toward E-mobility: The Present and Future Role of Lithium Carbonate Production. J. Clean. Prod. 2012, 23, 104–112. [Google Scholar] [CrossRef]
- Gmar, S.; Chagnes, A. Recent Advances on Electrodialysis for the Recovery of Lithium From Primary and Secondary Resources. Hydrometallurgy 2019, 189, 105124. [Google Scholar] [CrossRef]
- Nie, X.Y.; Sun, S.Y.; Sun, Z.; Song, X.; Yu, J.G. Ion-fractionation of Lithium Ions From Magnesium Ions by Electrodialysis Using Monovalent Selective Ion-exchange Membranes. Desalination 2017, 403, 128–135. [Google Scholar] [CrossRef]
- Nie, X.Y.; Sun, S.Y.; Song, X.; Yu, J.G. Further Investigation Into Lithium Recovery From Salt Lake Brines With Different Feed Characteristics by Electrodialysis. J. Membr. Sci. 2017, 530, 185–191. [Google Scholar] [CrossRef]
Element | Clayton Valley, USA | Salar de Atacama, Chile | Salar de Hombre Muerto, Argentina | Salar de Rincon, Argentina | Zhabuye Salt Lake, China | Qaidam Basin Salt Lakes, China |
---|---|---|---|---|---|---|
All numbers in wt% | ||||||
Li | 0.02–0.04 | 0.11–0.31 | 0.05–0.06 | 0.03 | 0.05–0.10 | 0.01–0.03 |
K | 0.53–1.00 | 1.80–2.97 | 0.52–0.62 | 0.62–0.66 | 2.64–3.83 | 0.60–0.66 |
Mg | 0.03–0.06 | 0.82–1.53 | 0.05–0.09 | 0.28–0.30 | 0–0.001 | 0.47–3.51 |
Ca | 0.02–0.05 | 0.02–0.04 | 0.05–0.09 | 0.04–0.06 | 0–0.01 | 0.02–0.42 |
B | 0–0.01 | 0.06–0.07 | 0.02–0.04 | 0.04 | 0.29–1.46 | 0.03–0.05 |
Na | 6.20–7.50 | 1.03–9.10 | 9.79–10.30 | 9.46–9.79 | 10.66–10.81 | 6.20–6.84 |
Cl | 10.10–11.70 | 2.03–18.95 | 15.80–16.80 | 15.80 | 12.16–12.31 | 9.20–20.42 |
LiCl Solution | NaCl Solution | KCl Solution | CaCl2 Solution | |||||
---|---|---|---|---|---|---|---|---|
Diluate | Concentrate | Diluate | Concentrate | Diluate | Concentrate | Diluate | Concentrate | |
CE 1st batch | 89.9% | 71.8% | 73.0% | 69.5% | 76.5% | 60.5% | 89.7% | 65.5% |
CE 2nd batch | 61.3% | 49.3% | 57.5% | 60.8% | 59.7% | 51.9% | 70.8% | 49.3% |
CE 3rd batch | 58.9% | 50.4% | 57.4% | 56.5% | 60.8% | 45.4% | 70.1% | 45.6% |
CE 4th batch | 56.1% | 46.6% | 53.2% | 55.1% | 56.1% | 49.0% | 66.5% | 58.2% |
Overall CE | - | 67.2% | - | 64.3% | - | 55.4% | - | 58.7% |
Feed | Volume of Diluate Solution Treated (L) | Volume Increase in Concentrate Solution (L) | Hydration Number of the Cation According to [24] |
---|---|---|---|
LiCl solution | 3.3 | 0.025 | 5 |
NaCl solution | 3.2 | 0.010 | 4 |
KCl solution | 3.2 | 0.010 | 3 |
CaCl2 solution | 3.2 | 0.015 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rögener, F.; Tetampel, L. Electrodialysis for the Concentration of Lithium-Containing Brines—An Investigation on the Applicability. Membranes 2022, 12, 1142. https://doi.org/10.3390/membranes12111142
Rögener F, Tetampel L. Electrodialysis for the Concentration of Lithium-Containing Brines—An Investigation on the Applicability. Membranes. 2022; 12(11):1142. https://doi.org/10.3390/membranes12111142
Chicago/Turabian StyleRögener, Frank, and Lena Tetampel. 2022. "Electrodialysis for the Concentration of Lithium-Containing Brines—An Investigation on the Applicability" Membranes 12, no. 11: 1142. https://doi.org/10.3390/membranes12111142
APA StyleRögener, F., & Tetampel, L. (2022). Electrodialysis for the Concentration of Lithium-Containing Brines—An Investigation on the Applicability. Membranes, 12(11), 1142. https://doi.org/10.3390/membranes12111142