Enhancing the Ammonia Selectivity by Using Nanofiber PVDF Composite Membranes Fabricated with Functionalized Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dope Preparation
2.3. Membrane Fabrication by Electrospinning
2.4. Characterizations and Measurements
2.5. Ammonia Recovery Performance of Prepared Membrane by DCMD
2.6. Data Analysis
3. Results and Discussion
3.1. Membrane Surface Chemical Structure
3.2. Surface Morphology and Hydrophobicity
3.3. Thickness, Porosity, Pore Size, LEP and Mechanical Property
3.4. Ammonia-Recovery Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adam, M.R.; Othman, M.H.D.; Abu Samah, R. Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Sep. Purif. Technol. 2019, 213, 114–132. [Google Scholar] [CrossRef]
- He, Q.; Tu, T.; Yan, S. Relating water vapor transfer to ammonia recovery from biogas slurry by vacuum membrane distillation. Sep. Purif. Technol. 2018, 191, 182–191. [Google Scholar] [CrossRef]
- Karrman, E.; Jonsson, H. Including oxidisation of ammonia in the eutrophication impact category. Int. J. Life Cycle Assess. 2001, 6, 29–33. [Google Scholar]
- Tonelli, A.R.; Pham, A. Bronchiectasis, a long-term sequela of ammonia inhalation: A case report and review of the literature. Burns 2009, 35, 451–453. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Xu, W. Challenges for global sustainable nitrogen management in agricultural systems. J. Agric. Food Chem. 2020, 68, 3354–3361. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Duong, T.; Hoang, M. Ammonia removal by sweep gas membrane distillation. Water Res. 2009, 43, 1693–1699. [Google Scholar] [CrossRef]
- Winkler, M.K.; Straka, L. New directions in biological nitrogen removal and recovery from wastewater. Curr. Opin. Biotechnol. 2019, 57, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Zhou, Q.; Liang, J. High-efficiency NO electroreduction to NH3 over honeycomb carbon nanofiber at ambient conditions. J. Colloid Interface Sci. 2022, 616, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sirkar, K.K. Studies in vacuum membrane distillation with flat membranes. J. Membr. Sci. 2017, 523, 225–234. [Google Scholar] [CrossRef]
- Zico, M.M.; Ricci, B.C.; Reis, B.G. Sustainable ammonia resource recovery from landfill leachate by solar-driven modified direct contact membrane distillation. Sep. Purif. Technol. 2021, 264, 118356. [Google Scholar] [CrossRef]
- Qu, D.; Sun, D.; Wang, H. Experimental study of ammonia removal from Water by modified direct contact membrane distillation. Desalination 2013, 326, 135–140. [Google Scholar] [CrossRef]
- Guo, J.; Lee, J.-G.; Tan, T. Enhanced ammonia recovery from wastewater by Nafion membrane with highly porous honeycomb nanostructure and its mechanism in membrane distillation. J. Membr. Sci. 2019, 590, 117265. [Google Scholar] [CrossRef]
- Ma, D.; Gao, B.; Hou, D. Evaluation of a submerged membrane bioreactor (SMBR) coupled with chlorine disinfection for municipal wastewater treatment and reuse. Desalination 2013, 313, 134–139. [Google Scholar] [CrossRef]
- An, A.K.; Lee, E.-J.; Guo, J. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres. Sci. Rep. 2017, 7, 41562. [Google Scholar]
- Belfort, G. Membrane Filtration with Liquids: A Global Approach with Prior Successes, New Developments and Unresolved Challenges. Angew. Chem. Int. Ed. 2019, 58, 1892–1902. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; He, Q.; Feng, L. Techno-economic evaluation of ammonia recovery from biogas slurry by vacuum membrane distillation without pH adjustment. J. Clean. Prod. 2020, 265, 121806. [Google Scholar] [CrossRef]
- Mccartney, S.N.; Williams, N.A.; Boo, C. Novel Isothermal Membrane Distillation with Acidic Collector for Selective and Energy-Efficient Recovery of Ammonia from Urine. ACS Sustain. Chem. Eng. 2020, 8, 7324–7334. [Google Scholar] [CrossRef]
- Jiang, H.; Straub, A.P.; Karanikola, V. Ammonia Recovery with Sweeping Gas Membrane Distillation: Energy and Removal Efficiency Analysis. ACS ES&T Eng. 2022, 2, 617–628. [Google Scholar]
- He, Q.; Xi, J.; Shi, M. Developing a Vacuum-Assisted Gas-Permeable Membrane Process for Rapid Ammonia Recovery and CO2 Capture from Biogas Slurry. ACS Sustain. Chem. Eng. 2020, 8, 154–162. [Google Scholar] [CrossRef]
- Shi, M.; Xiao, M.; Feng, L. Water and green ammonia recovery from anaerobic digestion effluent by two-stage membrane distillation. J. Water Process Eng. 2022, 49, 102949. [Google Scholar] [CrossRef]
- Yang, X.; Duke, M.; Zhang, J. Modeling of heat and mass transfer in vacuum membrane distillation for ammonia separation. Sep. Purif. Technol. 2019, 224, 121–131. [Google Scholar] [CrossRef]
- Shirzadi, M.; Li, Z.; Yoshioka, T. CFD Model Development and Experimental Measurements forAmmonia-Water Separation Using a Vacuum Membrane DistillationModule. Ind. Eng. Chem. Res. 2022, 61, 7381–7396. [Google Scholar] [CrossRef]
- Rohani, R.; Yusoff, I.I.; Zaman, N.K. Ammonia removal from raw water by using adsorptive membrane filtration process. Sep. Purif. Technol. 2021, 270, 118757. [Google Scholar] [CrossRef]
- Intrchom, W.; Roy, S.; Mitra, S. Functionalized carbon nanotube immobilized membrane for low temperature ammonia removal via membrane distillation. Sep. Purif. Technol. 2020, 235, 116188. [Google Scholar] [CrossRef]
- Qasim, M.; Ul Samad, I.; Darwish, N.A. Comprehensive review of membrane design and synthesis for membrane distillation. Desalination 2021, 518, 115168. [Google Scholar] [CrossRef]
- Ravi, J.; Othman, M.H.D.; Matsuura, T. Polymeric membranes for desalination using membrane distillation: A review. Desalination 2020, 490, 114530. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, W.; Ding, Y. Preparation and characterization of antibacterial microporous membranes fabricated by poly(AMS-co-DMAEMA) grafted polypropylene via melt-stretching method. Chin. Chem. Lett. 2018, 29, 390–394. [Google Scholar] [CrossRef]
- Chang, H.-H.; Yao, L.-C.; Lin, D.-J. Preparation of microporous poly(VDF-co-HFP) membranes by template-leaching method. Sep. Purif. Technol. 2010, 72, 156–166. [Google Scholar] [CrossRef]
- Su, C.; Li, Y.; Cao, H. Novel PTFE hollow fiber membrane fabricated by emulsion electrospinning and sintering for membrane distillation. J. Membr. Sci. 2019, 583, 200–208. [Google Scholar] [CrossRef]
- Tijing, L.D.; Ruelo, M.T.G.; Amarjargal, A. Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chem. Eng. J. 2012, 197, 41–48. [Google Scholar] [CrossRef]
- Su, C.; Lu, C.; Cao, H. Fabrication and post-treatment of nanofibers-covered hollow fiber membranes for membrane distillation. J. Membr. Sci. 2018, 562, 38–46. [Google Scholar] [CrossRef]
- Cui, J.; Li, F.; Wang, Y. Electrospun nanofiber membranes for wastewater treatment applications. Sep. Purif. Technol. 2020, 250, 117116. [Google Scholar] [CrossRef]
- Sanaeepur, H.; Amooghin, A.E.; Shirazi, M.M.A. Water desalination and ion removal using mixed matrix electrospun nanofibrous membranes: A critical review. Desalination 2022, 521, 115350. [Google Scholar] [CrossRef]
- Tijing, L.D.; Choi, J.-S.; Lee, S. Recent progress of membrane distillation using electrospun nanofibrous membrane. J. Membr. Sci. 2014, 453, 435–462. [Google Scholar] [CrossRef]
- Francis, L.; Ahmed, F.E.; Hilal, N. Electrospun membranes for membrane distillation: The state of play and recent advances. Desalination 2022, 526, 115511. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Cao, H. High-selectivity membrane absorption process for recovery of ammonia with electrospun-hollow-fiber membrane. Sep. Purif. Technol. 2019, 216, 136–146. [Google Scholar] [CrossRef]
- Han, B.; Butterly, C.; Zhang, W. Adsorbent materials for ammonium and ammonia removal: A review. J. Clean. Prod. 2021, 283, 124611. [Google Scholar] [CrossRef]
- Xie, B.; Xu, G.; Jia, Y. Engineering carbon nanotubes enhanced hydrophobic membranes with high performance in membrane distillation by spray coating. J. Membr. Sci. 2021, 625, 118978. [Google Scholar] [CrossRef]
- Ragunath, S.; Roy, S.; Mitra, S. Carbon nanotube immobilized membrane with controlled nanotube incorporation via phase inversion polymerization for membrane distillation based desalination. Sep. Purif. Technol. 2018, 194, 249–255. [Google Scholar] [CrossRef]
- Tijing, L.D.; Woo, Y.C.; Shim, W.-G. Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J. Membr. Sci. 2016, 502, 158–170. [Google Scholar] [CrossRef]
- Li, K.; Hou, D.; Fu, C. Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination. J. Environ. Sci. 2019, 75, 277–288. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T. Enhanced performance of PVDF nanocomposite membrane by nanofiber coating: A membrane for sustainable desalination through MD. Water Res. 2016, 89, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Chamani, H.; Yazgan-Birgi, P.; Matsuura, T. CFD-based genetic programming model for liquid entry pressure estimation of hydrophobic membranes. Desalination 2020, 476, 114231. [Google Scholar] [CrossRef]
- Chamani, H.; Woloszyn, J.; Matsuura, T. Pore wetting in membrane distillation: A comprehensive review. Prog. Mater Sci. 2021, 122, 100843. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, P.; Liu, N. Highly efficient nanofibrous sterile membrane with anti-BSA/RNA-fouling surface via plasma-assisted carboxylation process. J. Membr. Sci. 2020, 601, 117935. [Google Scholar] [CrossRef]
- Song, J.; Deng, Q.; Huang, M. Carbon nanotube enhanced membrane distillation for salty and dyeing wastewater treatment by electrospinning technology. Environ. Res. 2022, 204, 111892. [Google Scholar] [CrossRef]
- Indriyati, P.I.; Dara, F. Nanocomposites of polyvinylidene fluoride copolymer-functionalized carbon nanotubes prepared by electrospinning method. In Proceedings of the 4th International Symposium on Green Technology for Value Chains (GreenVC), Tangerang, Indonesia, 28 February 2019; pp. 1–8. [Google Scholar]
- Feng, C.; Khulbe, K.C.; Matsuura, T. Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep. Purif. Technol. 2013, 102, 118–135. [Google Scholar] [CrossRef]
- Soberman, M.J.; Farnood, R.R.; Tabe, S. Functionalized powdered activated carbon electrospun nanofiber membranes for adsorption of micropollutants. Sep. Purif. Technol. 2020, 253, 117461. [Google Scholar] [CrossRef]
- Rosman, N.; Salleh, W.N.W.; Jamalludin, M.R. Electrospinning parameters evaluation of PVDF-ZnO/Ag2CO3/Ag2O composite nanofiber affect on porosity by using response surface methodology. In Proceedings of the Regional Congress on Membrane Technology (RCOM)/Regional Conference on Environmental Engineering (RCENVE), Online, 16–17 January 2021; pp. 1824–1830. [Google Scholar]
- Huang, J.-Q.; Hou, Z.; Gao, P. A freestanding hydroxylated carbon nanotube film boosting the stability of Zn metal anodes. Mater. Today Commun. 2022, 32, 103939. [Google Scholar] [CrossRef]
- Amariei, N.; Manea, L.R.; Bertea, A.P. The Influence of Polymer Solution on the Properties of Electrospun 3D Nanostructures. In Proceedings of the International Conference on Innovative Research (ICIR Euroinvent), Iasi, Romania, 25–26 May 2017; pp. 1–7. [Google Scholar]
- Nor, N.A.M.; Jaafar, J.; Ismail, A.F. Effects of heat treatment of TiO2 nanofibers on the morphological structure of PVDF nanocomposite membrane under UV irradiation. J. Water Process Eng. 2017, 20, 193–200. [Google Scholar] [CrossRef]
- Yang, H.-C.; Zhong, W.; Hou, J. Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation. J. Membr. Sci. 2017, 523, 1–7. [Google Scholar] [CrossRef]
- Drioli, E.; Ali, A.; Macedonio, F. Membrane distillation: Recent developments and perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, R.; Tian, M. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 2013, 425, 30–39. [Google Scholar] [CrossRef]
- Dong, Z.-Q.; Ma, X.-H.; Xu, Z.-L. Superhydrophobic PVDF-PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination 2014, 347, 175–183. [Google Scholar] [CrossRef]
- Roy, S.; Bhadra, M.; Mitra, S. Enhanced desalination via functionalized carbon nanotube immobilized membrane in direct contact membrane distillation. Sep. Purif. Technol. 2014, 136, 58–65. [Google Scholar] [CrossRef]
- Dutta, A.; Kalam, S.; Lee, J. Elucidating the inherent fouling tolerance of membrane contactors for ammonia recovery from wastewater. J. Membr. Sci. 2022, 645, 120197. [Google Scholar] [CrossRef]
Dope/Membrane Code | CNTs (wt%) | PVDF (wt%) | DMF (wt%) | Acetone (wt %) |
---|---|---|---|---|
8P | 0 | 8 | 55.20 | 36.80 |
10P | 0 | 10 | 54.00 | 36 |
0.05C-C/10P | 0.05 | 10 | 53.97 | 35.98 |
0.1C-C/10P | 0.1 | 10 | 53.94 | 35.96 |
0.5C-C/10P | 0.5 | 10 | 53.70 | 35.80 |
0.05C-C/8P | 0.05 | 8 | 55.17 | 36.78 |
0.1C-C/8P | 0.1 | 8 | 55.14 | 36.76 |
0.5C-C/8P | 0.5 | 8 | 54.90 | 36.6 |
0.05H-C/8P | 0.05 | 8 | 55.17 | 36.78 |
0.1H-C/8P | 0.1 | 8 | 55.14 | 36.76 |
0.5H-C/8P | 0.5 | 8 | 54.9 | 36.6 |
Membranes Code | Thickness (μm) | Porosity (%) | LEP (kPa) | Mean Pore Size (µm) | Water-Contact Angle (°) | Tensile Strength (MPa) |
---|---|---|---|---|---|---|
C-PVDF | 204 ± 1.5 | 74.46 ± 1.10 | 70 | 0.22 | 117.45 ± 1.76 | 2.33 ± 0.11 |
WHp-10P | 124 ± 18 | 95.53 ± 2.68 | 10 | 1.23 ± 0.66 | 128.90 ± 1.84 | 0.46 ± 0.16 |
10P | 213 ± 38 | 65.80 ± 2.16 | 10 | 1.34 ± 0.78 | 135.75 ± 0.74 | 16.59 ± 1.43 |
0.1C-C/10P | 183 ± 14 | 59.37 ± 0.92 | 10 | 2.50 ± 1.37 | 135.80 ± 0.57 | 30.33 ± 2.11 |
0.1C-C/8P | 214 ± 0.14 | 63.48 ± 1.81 | 47 | 0.59 ± 0.23 | 138.15 ± 1.48 | 32.54 ± 3.54 |
0.1H-C/8P | 180 ± 1.9 | 54.01 ± 1.16 | 40 | 0.655 ± 0.22 | 134.60 ± 0.64 | 19.12 ± 2.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, M.; Shang, Y.; Ji, L.; Yan, M.; Chen, F.; He, Q.; Yan, S. Enhancing the Ammonia Selectivity by Using Nanofiber PVDF Composite Membranes Fabricated with Functionalized Carbon Nanotubes. Membranes 2022, 12, 1164. https://doi.org/10.3390/membranes12111164
Xiao M, Shang Y, Ji L, Yan M, Chen F, He Q, Yan S. Enhancing the Ammonia Selectivity by Using Nanofiber PVDF Composite Membranes Fabricated with Functionalized Carbon Nanotubes. Membranes. 2022; 12(11):1164. https://doi.org/10.3390/membranes12111164
Chicago/Turabian StyleXiao, Man, Yu Shang, Long Ji, Mingwei Yan, Feng Chen, Qingyao He, and Shuiping Yan. 2022. "Enhancing the Ammonia Selectivity by Using Nanofiber PVDF Composite Membranes Fabricated with Functionalized Carbon Nanotubes" Membranes 12, no. 11: 1164. https://doi.org/10.3390/membranes12111164
APA StyleXiao, M., Shang, Y., Ji, L., Yan, M., Chen, F., He, Q., & Yan, S. (2022). Enhancing the Ammonia Selectivity by Using Nanofiber PVDF Composite Membranes Fabricated with Functionalized Carbon Nanotubes. Membranes, 12(11), 1164. https://doi.org/10.3390/membranes12111164