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Abstract: This study focuses on the development of porous ceramer and SiOC composites which are
suitable for microfiltration applications, using a mixture of polysiloxanes as the preceramic precursor.
The properties of the membranes—such as their pore size, hydrophilicity, specific surface area, and
mechanical resistance—were tailored in a one-step process, according to the choice of pyrolysis
temperatures (600–1000 ◦C) and the incorporation of micro- (SiC) and nanofillers (TiO2). Lower
pyrolysis temperatures (<700 ◦C) allowed the incorporation of TiO2 in its photocatalytically active
anatase phase, enabling the study of its photocatalytic decomposition. The produced materials
showed low photocatalytic activity; however, a high adsorption capacity for methylene blue was
observed, which could be suitable for dye-removal applications. The membrane performance was
evaluated in terms of its maximum flexural strength, water permeation, and separation of an oil-in-
water emulsion. The mechanical resistance increased with an increase of the pyrolysis temperature,
as the preceramic precursor underwent the ceramization process. Water fluxes varying from 2.5 to
370 L/m2·h (2 bar) were obtained according to the membrane pore sizes and surface characteristics.
Oil-rejection ratios of 81–98% were obtained at an initial oil concentration of 1000 mg/L, indicating
a potential application of the produced PDC membranes in the treatment of oily wastewater.

Keywords: polymer-derived ceramics; methylene blue adsorption; microfiltration membranes;
O/W emulsion separation

1. Introduction

The rapid growth of the petrochemical, pharmaceutical, food and fertilizer industries
has inevitably led to the intensive production of oily wastewater, which is one of the
main sources of groundwater and surface water pollution [1]. This type of wastewater
often contains micrometer-sized oil droplets dispersed in water, which form a stable oil-in-
water emulsion even without a stabilizer, making the oil/water separation difficult using
conventional processes (gravity separation, centrifugation, flocculation and coagulation) [2].
With growing environmental awareness worldwide, regulations, and the ever-increasing
demand for clean water, the development of innovative and cost-effective technologies for
water treatment has become a global concern [3,4]. In this scenario, membrane technology
has emerged as a promising separation process for oily wastewater, as it offers a high
separation efficiency and lower energy consumption, and is easy to scale-up [5,6].

Ceramic membranes have attracted more and more attention due to their outstand-
ing properties, such as their high mechanical strength, their superior chemical/thermal
resistance, the easy cleaning of membrane, and, consequently, their extended operating
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life [7]. However, their high manufacturing costs—especially that of the energy-intensive
powder-sintering process—have limited their wider application [8,9]. As a suitable alter-
native to the conventional powder process, ceramic structures with compositions such as
Si-O-C, Si-C and Si-(B)-N-C can be synthesized through the cross-linking and pyrolysis of
a suitable polymeric precursor at lower processing temperatures than the ones required for
the sintering process [10].

The general molecular structure of silicon-based polymers (-[Si(R1R2)-X]-) consists
of an element/group X bonded to silicon (Si) atoms along the polymer backbone, which
defines the class of Si-based materials, and the substituents R1 and R2 attached to silicon,
which define the properties of the polymer, such as its chemical and thermal resistance,
solubility, and rheology [11,12]. The main classes of Si-based materials are polysilanes
(X = Si), polysiloxanes (X = O), polycarbosilanes (X = CH2), polysilazanes (X = NH) and
polycarbodiimides (X = [N = C = N]) [13]. The bottom-up approach of the PDC route,
using molecular compounds as a starting material, allows the control of the chemical
composition and structure of the resulting ceramic, which is usually not possible with other
techniques [10,14]. Additionally, polymer-derived ceramics (PDC) can be produced using
polymer-forming techniques (fiber spinning, foaming, warm pressing, extrusion, injection
molding or tape casting), allowing a near-net shape manufacturing of complex shapes,
which can be later converted into the desired ceramic parts in an inert atmosphere [15–17].

At intermediate pyrolysis temperatures (500–700 ◦C), the decomposition of the or-
ganic functional groups in the preceramic polymer (and the resulting gas release) leads to
an increase in porosity [18]. The resulting structure is a hybrid ceramic material with a high
specific surface area [19]. However, a well-known drawback of PDC technology is the
poor control of the shrinkage and structural integrity of the polymer-to-ceramic conversion
products [20,21]. Thus, the developed transient porosity tends to disappear as the pyrolysis
temperature increases.

Pioneering studies [17,22–24] have shown that the incorporation of solid filler particles
into the preceramic matrix can reduce the gas formation and the associated volume shrink-
age during pyrolysis, thus reducing the formation of cracks and preventing the collapse of
micro- and mesopores, resulting in a porous ceramic phase after the polymer-to-ceramic
conversion. Aside from this, the addition of filler particles could provide additional func-
tional properties such as hydrophilicity [25], high hardness/wear resistance [26], magnetic
and electrical functionalities [27–29], and catalytic performance [30,31].

Silicon oxycarbides (SiOC) are among the best-researched PDC materials, as they
have suitable mechanical properties and physical/chemical stabilities in high-temperature,
oxidative and corrosive environments [32]. The SiOC structure consists of a network of
corner-shared silicon-centered tetrahedra (Si–C and Si–O bonds) composed of a mixture of
SiO4, SiO3C, SiO2C2, SiOC3 and SiC4, which remain predominantly amorphous at temper-
atures up to 1250 ◦C [33,34]. The versatility of the SiOC chemistry allows the properties to
be modified for applications in various fields [35], such as gas separation [36,37], catalytic
subtracts [12,38], and energy storage [39,40].

Despite the aforementioned advantageous properties, only a few studies have begun to
evaluate the potential of PDC materials for microfiltration applications: Dong et al. [41] used
a combination of polyhydromethylsiloxane and tetramethyl-tetravinyl-cycletetrasiloxane
as a precursor to produce a ceramic membrane (pyrolyzed at 1200 ◦C) for the separation
of an oil-in-water emulsion, while Zhang et al. [42] combined tetramethylcyclotetrasilox-
ane and tetramethyltetravinylcyclotetrasiloxane to develop a membrane (pyrolyzed at
1000 ◦C) for the filtration of rhodamine B. Those studies, however, did not investigate the
potential of ceramer membranes for microfiltration applications using lower pyrolysis, or
the possibility of tailoring the membrane properties—such as the hydrophilicity, specific
surface area and mechanical resistance—in a one step-process, according to the choice of
pyrolysis temperatures and different filler materials. Thus, this study focuses on the devel-
opment of porous ceramer and SiOC composites tailored for microfiltration applications
by investigating the effects of the pyrolysis temperature and the incorporation of micro-
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(SiC) and nanofillers (TiO2) on the PDC membrane morphology, pore size, porosity, surface
characteristics, mechanical strength, and performance in terms of water permeation and
the filtration of an oil-in-water emulsion. Additionally, the lower-temperature pyrolysis
ranges (600–700 ◦C) could allow the incorporation of TiO2, in its active phase [31], such
that the photocatalytic potential of the material could also be investigated.

2. Materials and Methods
2.1. Materials

Commercial methyl polysiloxane (Silres® MK, Wacker Chemie AG, Burghausen,
Germany) and phenylmethyl polysiloxane (Silres® H44, Wacker Chemie) were used as
the binders and preceramic polymer. Xylene (98.5%, Sigma–Aldrich, Hamburg, Germany)
was the solvent for the polysiloxanes and the liquid medium, which was used to further
disperse the components, and imidazole (99%, Imidazole) was applied as a cross-linking
catalyst. Commercially available silicon carbide (SiC F800, d = 6.5 µm, Fluka) and titanium
dioxide (TiO2, d = 21 nm, P25 Degussa) particles were incorporated as fillers. Azodicar-
bonamide (ADA, 97%, Sigma–Aldrich) was used as the pore former. Methylene blue (MB,
Fluka) was used as a tracer dye. MCT oil was used to prepare an oil-in-water emulsion,
and Polysorbate 80 (Tween 80, Sigma–Aldrich) was applied as a surfactant.

2.2. Membrane Processing Route

The tape-casting technique was applied to produce porous hybrid ceramic membranes
using a mixture of the methyl polysiloxanes (MK) and the phenylmethyl polysiloxane
(H44) as preceramic precursors (ratio 1:1). The slurry preparation (Figure 1, Table S1)
starts with the dissolving of the polysiloxanes in xylene, followed by the addition of
azodicarbonamide to the solution under constant stirring (1 h). TiO2 particles were slowly
added to the slurry in order to minimize agglomeration and ensure the homogeneity of
the mixture (1 h). Then, the SiC particles were incorporated into the slurry and stirred
for 1 h to produce a homogeneous mixture. The slurry was cross-linked using imidazole
at room temperature (1 h) in order to avoid any later melting during heat treatment, cast
over a polyethylene terephthalate carrier film (HOSTAPHAN®, Mitsubishi Polyester Film
GmbH) using a doctor blade (gap = 1.2 mm), and dried at room temperature in a fume hood
for 24 h. Afterwards, the dried green tapes were pyrolyzed at 600, 700, 800 and 1000 ◦C in
order to evaluate the effect of the pyrolysis temperature (Tp) on the membranes’ properties.
In particular, lower pyrolysis temperatures could ensure that anatase is obtained as the
phase of the TiO2 particles, which could allow some degree of photocatalytic activity of the
membranes produced. The pyrolysis was performed in a nitrogen atmosphere (99.999%
N2 purity), with a heating rate of 120 ◦C/h up to 100 ◦C below the final temperature
(Tp –100 ◦C) and 30 ◦C /h until the final temperature (Tp), with a dwelling time of 4 h.
A cooling rate of 120 ◦C/h was applied at the end of the pyrolysis step. The samples
were designated Tx_Siy-z, where x and y correspond to the respective percentage of the
dry weight of TiO2 (0, 5 and 10%) and SiC (49, 54 and 59%) particles, and the pyrolysis
temperature is given by z.
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2.3. Characterizations

The samples’ weight loss during pyrolytic conversion was investigated by thermo-
gravimetric analysis (TGA, STA 503 Bähr), using a heating rate of 2 ◦C/min under a nitrogen
flow (2 L/min). X-ray diffraction analysis (powder XRD, Seifert 3003) was conducted in
order to identify the crystal phases of the pyrolyzed samples. The membrane macrostruc-
ture was analyzed by scanning electron microscopy (SEM, Zeiss EVO 10). Prior to the
measurement, the samples were sputtered with gold (K550, Emitech, Judges Scientific,
London, UK). The pore size distribution and the open porosity of the tapes were deter-
mined by mercury-intrusion porosimetry (Pascal 140/440 POROTEC). Nitrogen adsorp-
tion/desorption isotherm analysis performed at 77 K (Belsorp-Mini, Bel Japan, Osaka,
Japan) determined the specific BET surface area (SSA). For these measurements, the py-
rolyzed tapes were ground and sieved (x < 300 µm), and the powder was pretreated at
120 ◦C for 3 h in a vacuum. The surface characteristics of the membranes with regard to
hydrophilicity/hydrophobicity were accessed by water and n-heptane vapor adsorption.
For this analysis, the samples were ground, sieved (x < 300 µm), and dried at 70 ◦C (24 h).
Then, each dried sample was placed in a vessel in an Erlenmeyer flask filled with water or
heptane. The liquids were in equilibrium with their vapor phase at 20 ◦C. After 24 h, the
samples were removed from the flasks and weighed, and the vapor uptake was determined.
Adsorption/photocatalytic tests were performed using Methylene Blue as a tracer dye and
a UV source (RSW-P03-365-0 3W UV LED, Roschwege GmbH, Greifenstein, Germany).
The samples were ground, sieved (x < 300 µm), and brought into contact with an MB
solution (C0 = 50 mg/L) under magnetic stirring. For comparison, these experiments were
performed in the dark, or in the presence of the UV source. After certain time intervals,
aliquots of 1 mL were taken from the stirred MB solutions, and centrifuged (12,000 rpm,
10 min) to remove the solid particles; the supernatants were then analyzed using a UV-Vis
spectrophotometer (λmax = 665 nm). The maximum flexural strengths (σmax) of the tapes
were obtained by three-point bending tests (Roell Z005, Zwick, Ulm, Germany). These
measurements were performed using a 5 kN load cell (piezoelectric force sensor) at a fixed
crosshead speed and a pre-load of 0.1 mm.min−1 and 0.25 N, respectively. Fifteen samples
for each composition and temperature were cut into a rectangular format (16 mm length,
2 mm width, and 0.7–1.0 mm thickness) and placed in the center of a sample holder held by
two cylindrical holders (d = 1.5 mm) 10 mm apart. The water permeation and oil-in-water
(O/W) emulsion filtration performance of the membranes were assessed using a homemade
setup in a dead-end configuration. Tapes of different compositions (T0 and T10) pyrolyzed
at different temperatures were cut into a circular shape (10 mm diameter) and tested in
duplicate at different pressures (1, 1.5 and 2 bar) for water permeation, and at 2 bar for the
filtration experiments. The permeation flux was calculated according to Equation (1):

J =
1
A

dm
dt

(1)

where J is the permeation flux (kg/m2·h), A is the transverse area of the membrane a (m2),
dm represents the mass variation in kg, and dt is the time variation (h). DI water was
used for the water permeation experiments, while filtration was carried out with an O/W
emulsion using 1000 mg/L MCT oil. The size of the oil droplets was analyzed using a Laser
Diffraction Particle Size Analyzer (Horiba LA-960, Hannover, Germany). Microfiltration
was performed to a volume reduction factor of 2 (the ratio of initial feed volume to the
final retentate volume). The oil removal was quantified by total organic carbon analysis
(LCK386 kit, HACH, Düsseldorf, Germany), and the average oil rejection coefficients (R%)
were calculated according to Equation (2) [32]:

R% =

1 −
Cp(C f 0−Cr f
2

)
·100% (2)
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where Cp is the raffinate concentration, Cf0 is the initial feed concentration, and Crf corre-
sponds to the final retentate in the batch system.

3. Results and Discussions

In this study, porous ceramer and ceramic membranes were produced via tape casting,
using MK and H44 as preceramic precursors, azodicarbonamide as a pore formation agent,
and imidazole as a cross-linking agent. The combination of methyl (MK) and phenylmethyl
(H44) polysiloxanes in a ratio of 1:1 was a composition optimization previously established
in our working group [43], which conferred sufficient mechanical stability to the tape-cast
material. Additionally, the mixture of these polysiloxanes shows other advantages: because
the decomposition of phenyl groups starts at lower temperatures (420–500 ◦C) than that of
methyl groups (T > 600 ◦C), the use of H44 results in higher BET surface areas and lower
hydrophobicity than MK when pyrolyzed at lower temperatures (500–600 ◦C) [18,44]. On
the other hand, MK offers a higher ceramic yield (84 wt%) than H44 (72 wt%) under N2 at
1000 ◦C [45]. Complementary amounts of SiC (6.5 µm) and TiO2 (21 nm) were used as fillers
in order to prevent the characteristic shrinkage of polysiloxanes-based material during
the pyrolysis process, to increase mechanical stability, and to evaluate the effect of these
micro- and nanofillers on the morphology, pore size, and surface characteristics of PDC
membranes. The obtained slurries were homogenous, and no difficulties were observed
during the tape-cast procedure. However, the formation of a TiO2 agglomerate cannot be
excluded under these conditions. The produced tapes were pyrolyzed at 600, 700, 800 and
1000 ◦C, in an inert atmosphere (N2), in order to evaluate the effect of the temperature on
the membrane properties. A gradual change in coloration was observed with the increase of
the pyrolysis temperature. All of the pyrolyzed tapes presented sufficient handling stability. The
membranes were evaluated in terms of their macro- and microstructure, surface characteristics,
flexural strength, water permeation, and filtration of an oil-in-water emulsion.

Additionally, TiO2 is an efficient photocatalytic agent (under UV) which is usually
used for the oxidative degradation of organic components in water treatment [31,33]. Apart
from the aforementioned characteristics, the incorporation of TiO2 could impart a self-
cleaning property to the PDC membranes (under an appropriate light source), which could
reduce membrane fouling, one of the main obstacles in the application of membranes.
This potential has mostly been explored in polymer membranes [31]. However, because
the photocatalytic performance of TiO2 is phase-dependent—it shows a higher efficiency
in the anatase phase (formation in the temperature range 400–700 ◦C) and a decreasing
potential at the transition from the anatase to the rutile phase (complete conversion at
around 1000 ◦C) [33]—this kind of application is not possible in a conventional ceramic
membrane matrix, when TiO2 is applied as a starting powder, due to the high sintering
temperatures applied in their fabrication (900–1700 ◦C) [34]. On the other hand, a pyrolysis
temperature range of 600–700 ◦C could allow the incorporation of TiO2 in the anatase
phase into the relatively thin membrane produced via the PDC processing route, and the
photocatalytic potential of the material could thereby be investigated.

3.1. Membrane Composition

According to the literature, the pyrolylitc decompositon of polysiloxanes at 1000 ◦C
under nitrogen leads to the formation of SiOC [46–48]. A more detailed analysis of the
structural changes during the pyrolytic decomposition of the methyl and methylphenyl
polysiloxanes in N2 at 1000 ◦C can be found in the work of Cerny et al. [46]. Overall, the
conversion of polysiloxanes to SiOC begins with the cross-linking of a preceramic precursor
(100–400 ◦C), creating a siloxane polymer network. At pyrolysis temperatures above 400 ◦C,
a series of radical reactions and rearrangements results in the cleavage of Si-C, C-C, Si-H,
and C-H bonds. The authors [46] stated that the Si-O skeleton of the polymer is very stable,
and should resist pyrolysis temperatures well above 1000 ◦C. Although redistribution
reactions between Si-C and Si-O bonds are likely to occur during the pyrolysis at 1000 ◦C
under N2, the number of Si-O bonds remains approximately constant. Additionally, these
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exchange reactions—in which Si-C bonds are exchanged for Si-O bonds and vice versa—are
responsible for the formation of SiO2 and SiC nanodomains. An extensive study of the
nanodomains in polymer-derived SiOC materials is described in the literature [49].

In this study, the decomposition behavior of the produced tapes was analyzed by
thermal gravimetric analysis. Figure S1 shows the pyrolytic decomposition behavior of the
different membrane compositions. The initial weight loss observed at temperatures between
100 and 400 ◦C is related to the degradation of the azodicarbonamide (200–300 ◦C), the
cross-linking process of the preceramic polymers, and the consequent release/evaporation
of the cross-linked products (water and alcohols), oligomers and solvents. MK has about
4% of the cross-linking active groups (-OH and -OR), while H44 has about 7%, and those
groups are converted to H2O and alcohol (HOR) [18]. At temperatures above 400 ◦C, the
weight loss results from the decomposition of the organic groups phenyl and methyl of
preceramic polymers H44 and MK. A hybrid ceramic material (ceramer) is obtained using
a pyrolysis temperature in the range of 400–800 ◦C, while SiOC structures are formed above
800 ◦C (ceramization process) [16].

X-ray diffraction was used to determine the crystal structure of the produced mem-
branes. For comparison, the pure TiO2 and SiC filler particles were also analyzed. Figure 2
shows the respective XRD spectra of TiO2 (P25 Degussa), SiC, and sample T10 pyrolyzed at
different temperatures (600–1000 ◦C).
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Figure 2. XRD analysis for the samples: (a) P25 Degussa (TiO2 powder), SiC powder and sample
T10_Si49-600; (b) sample T10_Si49 pyrolyzed at different temperatures (700–1000 ◦C).

Silicon–oxycarbide (SiOC) material exhibits a remarkable resistance to crystallization,
and its structures remain predominantly amorphous up to temperatures of 1250 ◦C [36].
Therefore, the peaks observed in the XRD spectra can be associated with the presence of
TiO2 and SiC filler particles. The characteristic peak for anatase at 2θ = 25 and other anatase-
related peaks in P25 Degussa were identified in the produced material pyrolyzed at different
temperatures (600–800 ◦C). This confirms that TiO2 in the anatase phase was successfully
incorporated into the membrane matrix. The increase of the pyrolysis temperature, however,
promoted a reduction of the anatase peaks in the produced tapes, although some anatase
peaks are still maintained in the samples pyrolyzed at 800 ◦C. Bhattacharjee et al. [37]
observed a similar outcome when incorporating P25 Degussa TiO2 nanoparticles into
an H44 foam. The authors suggested that the anatase nanoparticles were coupled to the
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Si-O backbone of the H44, forming titanosiloxane (Si-O-Ti-) bonds (further confirmed
by FTIR spectroscopic investigation) that remain stable at higher temperatures (800 ◦C)
than the usual range for the transformation of anatase to rutile (400–700 ◦C). However,
Figure 2 shows that the remaining anatase peaks at 800 ◦C disappear with a further
increase in pyrolysis up to 1000 ◦C. It is therefore to be expected that the photocatalytic
potential of the samples produced will gradually decrease when the material is pyrolyzed
at higher temperatures.

3.2. Membrane Macrostructure

The macrostructures of the pyrolyzed tapes were analyzed by scanning electron
microscopy and mercury intrusion porosimetry. All of the samples presented similar
sponge-like structures (Figure S2) with small spheroidal pores homogeneously distributed
in the matrix. Figure 3 shows a selection of membranes of different compositions pyrolyzed
at different temperatures. The pore morphology was mainly determined by the degrada-
tion of the pore-forming agent azodicarbonamide during pyrolysis, as well as the space
between the particles of different sizes, resulting in a network of interconnected pores in
the membrane structure.
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The effect of the incorporation of ADA on polysiloxane-based tapes has been previ-
ously described by Nishihora et al. [50]. According to this investigation, the ADA—a typical
blowing agent in a simultaneously cross-linking PDC [38]—is trapped by the cross-linked
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one, preventing the usual foaming process. The decomposition of ADA during the pyroly-
sis (300 ◦C) lead to a homogeneous porous structure constituted by small and irregularly
shaped pores, as was also observed on the samples presented in Figure 3. A first compar-
ison of the SEM images indicates that increasing the pyrolysis temperature or partially
replacing the SiC with TiO2 particles does not seem to visibly affect the structure of the
PDC matrix. Therefore, mercury intrusion analysis was performed to further investigate
the membrane macrostructure.

Figure 4 presents the pore size distribution data for samples T0_Si59 and T10_Si49 py-
rolyzed at different temperatures, and the average pore sizes for all of the samples obtained
by mercury intrusion porosimetry. The sample T5_Si54 presented a pore-size distribution
at intermediate values between T0_Si59 and T10_Si49; thus, they are not displayed.

A narrow pore size distribution with an average pore size range of 0.3–1.4 µm and
porosities of 30–40% was found for all of the samples. A general increase in pore size was
observed with the increase in the pyrolysis temperature. In particular, a gradual decrease of
the relative volume of the mesopores was observed as the pyrolysis temperature increased
from 600 ◦C to 1000 ◦C. The collapse of micro/mesopores into larger pores at higher
pyrolysis temperatures has already been reported in the literature [23]. On the other
hand, increasing the amount of TiO2 resulted in smaller average pore sizes, which can be
attributed to the size of the TiO2 nanoparticles (21 nm), which can aggregate and thereby fill
empty voids in the material structure. Therefore, the average pore size of the microfiltration
membranes can be tailored by adjusting the pyrolysis temperature and the filler content.
Apart from this, thermal treatment and the incorporation of nanofillers can also affect other
membrane properties, which was further investigated.

3.3. Microporosity and Surface Characteristics

The effects of the composition and pyrolysis temperature on the microstructure of the
pyrolyzed samples were analyzed using nitrogen adsorption–desorption isotherms and
their respective BET specific surface areas (SSA) (Figure 5). The isotherms of the samples
pyrolyzed between 600 and 800 ◦C presented pronounced adsorption volumes at very
low relative pressures, corresponding to isotherm type I (b) [51], which is characteristic of
materials with micropores and possibly narrow mesopores. A similar profile was observed
for T10-Si49 pyrolyzed at 1000 ◦C. However, a moderate increase of the adsorption volumes
and a slightly pronounced hysteresis was observed at relative pressures above 0.4 at
a higher magnification (Figure 5d), which is a behavior closely related to isotherm Type
IV [51], indicating a larger amount of mesopores. The sample T0-Si59_1000, on the other
hand, presented the lowest adsorption volume, with increasing adsorption mainly in the
range of the higher relative pressure region (isotherms type II), which is characteristic of
macroporous materials (Figure 5d). The total amount of adsorbed gas correlates with the
pore volume, and significantly decreases with the increase of the pyrolysis temperature.

Micro/mesoporosity was formed at intermediate pyrolysis temperatures (500–700 ◦C)
due to the decomposition of the organic groups present in the preceramic polymers.
High SSAs of up to 200 m2/g (T5_Si54-600, T10_Si49-600) were obtained for the tapes
pyrolyzed at 600 ◦C, whereas at higher pyrolysis temperatures, due to the collapse of the
micro/mesopores into larger pores, a gradual decrease in SSA was observed, reaching
values as low as 10 m2/g (T0_Si49-1000).
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Figure 4. Pore size distribution, open porosity and average pore size for the tapes: (a) T0-Si59 and
(b) T10_Si49 pyrolyzed at 600–1000 ◦C. (c) The average pore size for all of the samples pyrolyzed at
600–1000 ◦C.
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Figure 5. Nitrogen adsorption isotherms for samples (a) T0-Si59 and (b) T10-Si49. (c) BET-specific
surface area for all of the samples at different pyrolysis temperatures (600–1000 ◦C). (d) Isotherms for
the samples pyrolyzed at 1000 ◦C.

The addition of filler particles can hinder the shrinkage of the bulk during the pyrolysis
of preceramic polymers, providing paths for the release of the generated gases, thereby
retarding the collapse of micro–mesopores [23]. In this work, the addition of increasing
amounts of TiO2 nanoparticles into the membrane composition further preserved micro-
and meso-porosity, leading to a higher specific surface area for all of the analyzed tem-
peratures. Hojamberdiev et al. [52] also reported that the incorporation of TiO2/N-doped
TiO2 into an SiOC matrix strengthened the porous structure against a gradual collapse
at higher pyrolysis temperatures: as they increased the pyrolysis temperature from 700
to 900 ◦C, the SSA of the pure SiOC ceramic abruptly decreased from 398 to 60 m2/g,
while less-pronounced reductions were observed for the SiOC/TiO2 (336 to 212 m2/g) and
SiOC/N-doped TiO2 (254 to 129 m2/g) composites.

In summary, the SSA of the PDC membranes can be tailored by adjusting the pyrolysis
temperature and the particle size of the fillers used. Aside from the microporosity, the
pyrolysis temperatures and the material composition can also have an influence on the
surface properties of the membranes produced. Therefore, the hydrophilic/hydrophobic
surface behavior of the produced tapes was evaluated by analyzing the adsorption of
water and n-heptane vapor (Figure 6). In these measurements, a ratio of water-to-heptane
>1 corresponds to a higher water uptake, indicating the higher hydrophilicity of the
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material, while a ratio < 1 indicates a higher affinity to n-heptane, and therefore a more
hydrophobic character.
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Figure 6. Water and n-heptane vapor adsorption, and the ratio of the maximum water and n-heptane
adsorption (right axis) for all of the samples pyrolyzed at different temperatures (600–1000 ◦C).

Figure 6 shows that the surface character is significantly influenced by the pyrol-
ysis temperature. Although all of the samples presented a water-to-heptane ratio > 1,
the samples pyrolyzed at 600 ◦C showed ratios 2–3-times lower than their counterparts
pyrolyzed at higher temperatures. This can be explained by the decomposition of the
polysiloxane during the pyrolysis process. As was already shown in the TGA analysis, the
decomposition of the organic groups (phenyl and methyl) of preceramic polymers H44
and MK starts above 500 ◦C. In the samples pyrolyzed at 600 ◦C, the remaining functional
groups provided a more hydrophobic character than in the samples pyrolyzed at higher
temperatures, as the material loses its organosilicon character. Previous works [25,44,53]
using the same preceramic polymers (with or without ceramer fillers) clearly demonstrated
the hydrophobicity of materials pyrolyzed at temperatures of 600 ◦C by a water-to-heptane
ratio of significantly <1. This indicates that not only the pyrolysis temperature but also the
filler nature can play a role in the surface character of the produced samples. The use of
pure SiC as a filler in a PDC matrix instead of ceramer fillers already showed an increase
in the hydrophilicity of the samples. Moreover, the partial replacement of SiC by TiO2
nanoparticles (which are often applied to improve the hydrophilicity of polymeric mem-
branes [54,55]) promoted a further increase in the water-to-heptane ratios. These results
demonstrate that the microporosity and surface properties of polysiloxane-based material
can be tuned according to the pyrolysis temperature and the nature of the filler particles in
a single-step process.

3.4. Adsorption and Photocatalytic Activity

The XRD spectra described earlier confirmed that TiO2 was successfully incorporated
into the membrane matrix in the anatase phase. However, the increase of the pyrolysis
temperature from 600 to 1000 ◦C caused a reduction of the anatase peaks in the produced
tapes (Figure 2). Thus, it is expected that the photocatalytic potential would gradually
decrease in samples pyrolyzed at higher temperatures.

The adsorption and the photocatalytic performances of the produced samples were
assessed in a series of tests using methylene blue (MB) as a tracer dye and a UV light source.
The initial results (Figure S3a) showed a significant adsorption of MB by the produced PDC
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material, and that the commonly used period of 2 h for adsorption in the dark [40,45,46]
was not sufficient to reach equilibrium. Therefore, performing irradiation experiments after
a short adsorption time in the dark would lead to misleading photocatalytic degradation
capacities. In order to determine the maximum MB adsorption capacity of the prepared
PDC material, and thus better separate the effects of adsorption and photocatalysis on
the dye removal, samples T0_Si59-600, T10_Si49-600, T0_Si59-700 and T10_Si49-700 were
exposed to MB solution (C0 = 50 mg/L) as a powder for 24 h. For comparison, the
effects of the UV light source on MB were also determined in the absence of any material
(photolysis), and in the presence of the equivalent amount of pure TiO2 nanoparticles.
Figure 7 summarizes the outcome of this experiment.
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Figure 7. MB removal capacity of samples T0_Si59-600, T10_Si49-600, T0_Si59-700 and T10_Si49-700
after 24 h in the dark (adsorption), and under a UV light source (photocatalytic degradation) for the
TiO2-incorporated samples (T10_Si49-600 and T10_Si49-700), for the equivalent amount of pure TiO2

nanoparticles, and in the absence of any material (photolysis).

In the evaluated period, the samples pyrolyzed at 700 ◦C presented a higher MB
removal capacity than those pyrolyzed at 600 ◦C. As was previously demonstrated by the
vapor adsorption and BET analysis of N2 isotherms, with increasing pyrolysis temperatures
(ceramization process) the character of the surface of PDC materials becomes more hy-
drophilic, while at the same time SSA decreases. The higher MB adsorption of T10_Si49-700,
despite its lower SSA than T10_Si49-600, could thus be related to its improved hydrophilic
character, which allows the better wettability of the samples by the MB solution. The
same trend can be observed for photocatalytic decomposition. The samples T10_Si49-600
and T10_Si49-700 removed 42% and 60% of MB, respectively, in the dark (adsorption), as
opposed to 55% and 80%, respectively, under UV light. Taking into consideration that
photolysis accounted for 9% of the reduction of the MB concentration, only 4% (T10_Si49-
600) and 11% (T10_Si49-700) of the dye removal could be associated with photocatalytic
degradation after a long period of UV light exposition.

Previous studies in the literature [38,52,56] reported a more pronounced photocatalytic
degradation of MB using TiO2 (particles or in situ formation) in PDC substrates, but the
experimental designs of the study did not allow us to exclude with certainty the possibility
that the observed MB removal was clearly separated from other influences, such as pure
adsorption in the material. Bhattacharjee et al. [56] showed a superior rate of photocatalytic
degradation of MB under UV light by anatase-loaded silica-based foams (developed using
a mixture of H44, glass and Degussa P25 TiO2 nanoparticles, and a pyrolysis temperature
of 800 ◦C) compared to plain TiO2 nanoparticles. However, the authors did not report
a prior period of equilibrium-adsorption in the dark, or an analogous experiment without
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UV radiation. Hojamberdiev et al. [37] evaluated the adsorption and photocatalytic activity
of TiO2/N-doped TiO2-incorporated SiOC composites in comparison with pure SiOC. In
their study, the authors placed their samples in contact with an MB solution for 2 h in
the dark in order to ensure the sufficient adsorption of dye molecules on the surfaces of
the material prior to the UV irradiation. Their study, however, did not provide values or
supporting data regarding the adsorption-equilibrium, and a higher reduction rate of MB
was observed in the presence of the pure SiOC material than the one obtained solely by
photolysis under UV irradiation, which indicates that the material might not have reached
an adsorption-equilibrium in the reported period in the dark. A similar outcome could be
expected for the TiO2/N-dopedTiO2-incorporated materials, especially when they present
higher adsorption capacities than the pure SiOC, as suggested by the author.

In a different approach, Icin et al. [38] coated PDC nanobeads (pyrolyzed at 600 ◦C
and 1200 ◦C) with titania precursor sol. The advantage of the coating procedure is that
TiO2 is more readily accessible to light irradiation on the surface of the material than it
is when entrapped in its matrix, while the disadvantage is the necessity of a secondary
thermal process, which can represent an increase in the production cost. The authors [45]
reported a high total MB removal efficiency of 97% (adsorption in the dark for 2 h, followed
by photodegradation under UV for 4 h) for their TiO2-coated PDC material. Although the
authors did not evaluate how much MB would be removed in a 6-h experiment without
UV irradiation for comparison, they reported that the 2-h adsorption in the dark already
accounted for 35% of the MB for the TiO2-coated samples. Therefore, similarly to our
study, the efficiency of MB removal by photodegradation observed in different TiO2-
incorporated/coated SiOC materials reported in the literature could also be due more to
the adsorption phenomena in the PDC material than photocatalytic effects promoted by
TiO2 under a proper light source.

The results of this study indicated that the possible anti-fouling effect on the produced
PDC membranes from a photocatalytic reaction would be significantly low, as TiO2 par-
ticles are not sufficiently accessible when embedded in a PDC matrix, and are not easily
quantified, as adsorption outshines the photodegradation effects. On the other hand, this
significant adsorption capacity for MB, which continues for periods of time even longer
than 24 h (Figure S3b), could be interesting for other wastewater treatment applications.
The presence of TiO2 also seemed to influence the adsorption capacity of the samples. For
the same pyrolysis temperature, the samples with 10% TiO2 presented a higher removal
of MB than their TiO2-free counterparts. This outcome could be attributed to their higher
SSA and improved hydrophilic character; the latter was observed especially for the sam-
ples T0_Si59-600 and T10_Si49-600. Despite the similar SSA, respectively 192.5 ± 4.5 and
200.8 ± 9.3 m2/g, the more hydrophilic TiO2-incorporated material removed 20% more MB
in the evaluated period of 24 h. The MB adsorption capacity of the PDC material evaluated
in this study was comparable to other adsorbents described in the literature (Table 1), and
its potential should be further investigated, e.g., for dye-removal applications.

Table 1. Adsorption capacity of MB on different adsorbents.

Material Adsorption Capacity (mg/g) Ref.

Fly ash 13.4 [57]
Granular active carbon 21.5 [58]

Neem leaf 8.8/19.6 [59]
Rice biomass8 8.1 [60]

SNCM * 20.0 [61]

T10_Si49-700 9.3 (24 h) **
15.2 (96 h) *** This study

T10_Si49-600 6.6 (24 h) **
12.8 (96 h) *** This study

* Synthetic layered sodium silicate magadiite nanosheets. ** Langmuir adsorption capacity (24 h). *** 96 h Kinetic
experiment, C0 = 50 mg/L.
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3.5. Mechanical Strength

The mechanical resistance of the membranes was accessed via a three-point bending
test in order to evaluate the maximum flexural strength (σmax) of the pyrolyzed tapes
(Figure 8). An enhanced mechanical resistance with an increase of the pyrolysis temperature
is expected as the preceramic precursor undergoes the ceramization process [2].
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Figure 8. Flexural strength (σmax) for tapes T0_Si59, T5_Si54, and T10_Si49 pyrolyzed at 600–1000 ◦C.

Hybrid ceramics are formed in the temperature interval of 600–800 ◦C, and are charac-
terized by the gradual disappearance of the organosilicon polymer nature of the material
due to thermal degradation in an inert atmosphere, while the precursor completely trans-
forms into an amorphous ceramic material at 1000 ◦C. Therefore, a gradual increment was
observed for the flexural strength. Aside from this, as previously explained, the incorpora-
tion of filler particles in PDC materials controls the shrinkage and prevents the formation
of macro-defects derived from the gas release during the pyrolytic polymer-to-ceramic
conversion. In this study, the amounts of SiC and TiO2 particles were varied; however, the
total amount of solid loading was kept constant. The average σmax for the different mem-
brane compositions did not change significantly at the same pyrolysis temperature. The
partial replacement of SiC by TiO2 particles neither improved nor affected the mechanical
resistance of the pyrolyzed tapes. An overall increment of σmax 15 ± 5 MPa to 35 ± 5 MPa
was observed as the pyrolysis temperature was increased from 600 to 1000 ◦C.

Various ceramic membranes described in the literature (Table 2) with flexural strength
values between 15–40 MPa have already been considered suitable for the microfiltration
process (with a usual transmembrane pressure interval of 0.1–2 bar). Thus, the ceramic
hybrid membranes produced in this work, including those pyrolyzed at lower tempera-
tures (600–700 ◦C), exhibited comparable flexural strength to the ceramic microfiltration
membranes described in the literature (Table 1), and to the SiOC membranes produced
by Dong et al. [41], in particular. The authors also evaluated the effect of pyrolysis on
their SiOC membranes produced in a higher temperature range of 1100–1400 ◦C. They
observed an increase in flexural strength from 19 ± 1 to 23 ± 2 MPa when the temperature
increased from 1100 to 1200 ◦C; however, a further increase in temperature to 1400 ◦C
significantly reduced the mechanical resistance of the membrane (4 ± 1 MPa). According
to the authors, the mixed bonding between O, C, and Si atoms in the amorphous structure
at 1200 ◦C played an important role in the thermodynamic stability of the ceramic structure.
At 1400 ◦C, the accelerated phase separation resulted in a decrease of mixed bonds and
an increase of interfacial regions, which caused more free carbon fragments, which led
to the decay of the samples pyrolyzed at high temperatures. A more detailed analysis
of the structural evolution of the silica domains, SiC domains, and free carbon regions,
as well as the dominant factors of the stabilization and destabilization of the pyrolyzed
polysiloxane-based structures, can be found elsewhere [62]. Overall, these studies suggest
that the directly proportional relationship between increasing pyrolysis temperatures and
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enhanced mechanical resistances in pyrolyzed polysiloxane-based materials is true up to
a certain point, from which further temperatures increments could lead to lower mechani-
cal resistance due to the structural evolution during the transition from an amorphous to
a crystalline structure. Therefore, the pyrolysis temperature is an important parameter that
needs to be optimized.

Table 2. Properties of planar ceramic membranes for microfiltration.

Membrane Material Sintering
Temp. (◦C)

Porosity
(%)

Pore Size
(µm)

Thickness
(mm)

Pressure
(bar)

Flexural
Strength

(MPa)

Oil Conc.
(mg/L)

Oil Rej.
(%) Ref.

Al2O3 1350 47 0.4 5 1 15 284 99.9 [63]
Al2O3 1300 37 0.5 3 2 22 200 99 [64]

Al2O3 + fly ash-mullite 1050 34.5 0.1 3 0.5 30 - - [65]
Moroccan clay 950 31–40 1.5–2.8 1.5 0–0.12 14–16 - - [66]

Moroccan clay/phosphate. 1100 28 2.5 1.6 0.12 17.5 - - [67]
Mullite whisker (MoO3) 1400 47 0.19 1.5 0.5–2 34 ± 4 250 97 [68]

Monolithic mullite 1400 64 0.3 - 2 42 ± 5 200–1000 96 [69]

Silicate/clay-mineral
1000
1050
1100

32
33
34

0.29
0.37
0.67

3 3
32 ± 3

30 ± 5.5
28 ± 5

600 86 [70]

SiOC 1200 42 0.59 0.65 0.5–2.0 23 ± 2 1000 94.6 [41]
TiO2/clay/quartz/feldspar 950 37–52 0.8–1.0 2 0.7–3.5 28–33 50–200 70–99 [54]

Si3N4 1650 46–56 0.61 - 1–2 51–105 1000 83–88 [71]

In this work, the lower processing temperatures used can represent an economic
advantage in the production cost of microfiltration membranes; thus, the potential of the
produced membranes for filtration applications is worth further exploration.

3.6. Membrane Performance

The water permeation and oil-in-water (O/W) emulsion filtration performance of the
membranes was assessed using a homemade setup in a dead-end configuration. Figure 9
shows the water permeation performance of the membranes T0_Si59 and T10_Si49, which
were pyrolyzed at different temperatures of 600, 800 and 1000 ◦C, and at different pressures
(1, 1.5 and 2 bars).
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Figure 9. Water flux as a function of the applied pressure (bar) for selected membranes in a dead-
end configuration.

An expected linear relationship between the water flux and the applied pressure was
observed for all of the samples with higher pressures, resulting in higher permeation fluxes.
The pore size and surface character of the samples also played a role in the permeation
performance. Bigger pore sizes represent lower mass transfer resistances, resulting in
higher permeation rates. In this study, the highest fluxes of pure water were obtained
for the samples T0_Si59-800 (370 L/m2·h) and T0_Si59-1000 (340 L/m2·h) at 2 bar, while
the lowest fluxes were observed for samples T0_Si59_600 (11 L/m2·h) and T10_Si49_600
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(2.5 L/m2·h). Aside from the smaller average pore size, the lower permeation observed
for samples pyrolyzed at 600 ◦C can also be attributed to the more hydrophobic character
of these membranes, which has already been described in Section 3.3. A comparison
between two samples with similar average pore sizes but different surface characteristics,
T0_Si59_600 (Ø = 0.6 µm) and T10_Si49_1000 (Ø = 0.7 µm), illustrated the superior water
permeation performance of hydrophilic membranes at 2 bar, at which the water flux of
T10_Si49_1000 is over 15-times higher than that of T0_Si59_600.

The performances of the membranes T0_Si59-800, T10_Si49-8000, T0_Si59-1000, T10_Si49-
1000 in the separation of an oil-in-water emulsion (C0 = 1000 mg/L) was determined at
a fixed pressure of 2 bar. The samples T0_Si59-600 and T10_Si49-600 could not be evaluated
due to their hydrophobic character and the associated high water permeation resistance.
Figure S4 shows the size distribution of the oil droplets in the prepared emulsion, which
was analyzed by laser diffraction. The oil droplet diameter ranged between 1 and 20 µm,
with a volume median diameter (D(v,0.5)) of 5.3 µm (D(v,0.1) = 2.9 µm, D(v,0.9) = 10.5 µm).
Oily wastewaters containing oil droplets with a size smaller than 20 µm—referred to as
emulsified oil—are usually stable, and can therefore be treated more effectively with mem-
brane technology than with other conventional separation processes, such as centrifugation
and coagulation [2]. In this study, the average pore diameters of the produced membranes
T0_Si59-800, T10_Si49-8000, T0_Si59-1000 and T10_Si49-1000 were smaller than those of
most oil droplets, indicating that the selected membranes are good candidates for the
purification of the prepared emulsion.

High average oil rejection coefficients were obtained for the membranes T10-Si49_800
(98.8%) and T10-Si49_1000 (94.1%), while separation efficiencies of 81.8% and 81.4% were
observed for T0-Si59_800 and T0-Si59_1000 (Figure 10). The higher oil rejection ratios of
T10_Si49-8000 and T10_Si49-1000 can be attributed to their narrower pore size distribution
(Ø = 0.7 µm), indicating that the pore diameters of these membrane are small enough
to efficiently prevent most oil droplets from permeating. Additionally, with respect to
the surface characteristics of the membranes, it has already been shown that the TiO2-
containing samples are more hydrophilic than their TiO2-free counterparts pyrolyzed at
the same pyrolysis temperature, which contributes to their better separation performance.
Figure 10c shows an overview of the relationships.
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Figure 10. (a) MCT oil rejection for samples T0_Si59-800, T10_Si49-800, T0_Si59-1000 and T10_Si49-
1000. (b) MCT oil emulsion before and after filtration with membranes T10_Si49-8000 and T0_Si59-
1000. (c) Radar plot with the different parameters influencing the oil rejection.

More generally, the oil separation performance of all of the membranes evaluated is
comparable to that of various ceramic membranes reported in the literature (Table 1). The
lower processing temperatures of PDC membranes can provide an economic advantage in
the production costs of microfiltration membranes; therefore, their use in this application
should be further explored.
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4. Conclusions

Symmetric porous ceramer and ceramic microfiltration membranes with narrow pore
size distributions were produced via the tape-casting technique, using polysiloxanes as
preceramic precursors. We demonstrated the ways in which the membranes’ properties
can be tailored according to the pyrolysis temperature and the incorporation of different
filler particles. The incorporation of TiO2 in the SiC/SiOC composites further preserved
the transient micro-mesoporosity generated during pyrolysis, resulting in a higher SSA.
Additionally, the lower pyrolysis temperature allowed the incorporation of TiO2 in its pho-
tocatalytically active phase. However, it could be shown that the adsorption phenomena in
the PDC material outshone the photocatalytic effects promoted by TiO2 using a proper light
source, and that the improper assessment of adsorption without irradiation could result in
misleading photodegradation capacities. Nevertheless, the significant adsorption capacity
for MB of the produced PDC material, which further increased with the incorporation
of TiO2 material, shows potential for other applications in wastewater treatment, and
should be further investigated. With regard to microfiltration applications, the ceramer and
ceramic membranes produced showed adequate flexural strength which was comparable
to that of various ceramic membranes for microfiltration described in the literature, which
were sintered at higher temperatures. For the new membranes, high oil removal efficiencies
of 81–98% were obtained for an initial oil concentration of 1000 mg/L, and were controlled
predominantly by adjusting the mean pore diameter and membrane hydrophilicity. Addi-
tionally, the lower processing temperatures could represent an economic advantage in the
production cost of microfiltration membranes.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/membranes12020175/s1. Table S1: Membrane composition; Figure S1:
Thermal Gravimetric analysis for samples T0_Si59, T5_Si54 and T10_Si49; Figure S2.: SEM images of
the cross-section areas of samples T0_Si59-700 (a,b) and T10_Si59-700 8 (c,d) revealing symmetrical
sponge-like structures; Figure S3: (a) MB adsorption isotherms of the sample T10-700 as a powder and
as a tape, and (b) MB removal over time using samples T10-600 and T10-700 as powders and as tapes
(96 h); Figure S4: Droplet size distribution of the feed O/W emulsion (MCT oil, C0 = 1000 mg/L).
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