Effects of Chemical Cleaning on the Ageing of Polyvinylidene Fluoride Microfiltration and Ultrafiltration Membranes Fouled with Organic and Inorganic Matter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrophilized PVDF Hollow-Fiber MF and UF Membranes
2.2. Synthetic Wastewater
2.3. Membrane Filtration Processes
2.4. Chemical Cleaning Regime
2.5. Membrane Characterization
2.6. Lifetime Prediction
- populations with β < 1 exhibit a failure rate that decreases with time,
- populations with β = 1 have a constant failure rate, and
- populations with β > 1 have a failure rate that increases with time.
3. Results and Discussion
3.1. Membrane Filtration Performance
3.2. Chemical Cleaning and Effects on Membrane Properties
3.2.1. NaOH and Citric Acid Cleaning
3.2.2. Polymer Hydrolysis and Ageing
3.3. Lifetime Estimation
4. Conclusions
- Both UF and MF membranes were able to completely retain suspended solids, yet retain small amounts of tannic acid. The UF membrane was able to retain more TOC than the MF membrane. Tannic acid molecules adsorb onto the membrane surface, which results in changes in surface characteristics, especially surface functional groups that are responsible for enhancing membrane’s hydrophilicity.
- NaOH could remove tannic acid and citric acid could remove inorganic matter (Fe2O3) that fouled the membranes. However, it was confirmed that NaOH had a stronger effect on the tensile strength and surface chemistry of the fouled MF and UF membranes than citric acid. The results infer the relationship between the fouling effects and changes in surface functional groups associated with chemical cleaning.
- Prediction of lifetime by an exponential (decay) model confirmed that the UF membrane cleaned with NaOH would be aged within about 1.8 years and the MF membrane after about 5 years, when a 10% tensile strength decrease against the original membrane is allowed (cleaning every 15 days, downtime 2 h per cleaning).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Items | MF membrane | UF membrane |
---|---|---|
Manufacturer | Kuraray Asia Pacific Ltd. | NANOTEC |
Material | PVDF | PVDF (19%) |
Configuration | Hollow-fiber | Hollow-fiber |
Fiber diameters (mm) | O.D. 1.4 mm/I.D. 0.7 mm | O.D. 1.76 mm/I.D. 0.85 mm |
Hydrophilic Additive (HA) | PVP | PEG |
Pore size | 0.02 µm | 100–200 kDa |
Contact angle (°) | 61.6 | 85.4 |
Tensile strength (MPa) | 6.11 | 5.35 |
Young modulus (Mpa) | 200.9 | 153.8 |
Turbidity (NTU) | TSS (mgl−1) | TOC (mgl−1) | pH (-) | Temp. (°C) | ||
---|---|---|---|---|---|---|
Tannic acid wastewater | Feed water | 208.3±19 | 271 ± 102 | 1387 ± 13.4 | 7.5 ± 0.1 | 25.3 ± 1.0 |
Permeate water | 0.25 ± 0.04 | N/A | 1383 ± 2.8 | 7.4 ± 0.18 | 25 ± 0.9 | |
Fe2O3 with Tannic acid wastewater | Feed water | 230.24 ± 72.45 | N/A | 1464 ± 94.36 | 7.42 ± 0.07 | 25.68 ± 0.64 |
Permeate water | 0.208 ± 0.15 | N/A | 1380 ± 126 | 7.23 ± 0.1 | 25 ± 0.1 |
Turbidity (NTU) | TOC (mgl−1) | pH (-) | Temp. (°C) | ||
---|---|---|---|---|---|
Tannic acid wastewater | Feed water | 145.4 ±45.69 | 1387 ± 13.4 | 7.28 ± 0.06 | 29 |
Permeate water | 0.30 ± 0.09 | 1383 ± 2.8 | 7.25 ± 0.04 | 29 | |
Fe2O3 with Tannic acid wastewater | Feed water | 161.41 ± 36.28 | 1464 ± 94.36 | 7.3 ± 0.005 | 29 |
Permeate water | 0.34 ± 0.11 | 1380 ± 126 | 7.23 ± 0.041 | 29 |
References
- Amor, C.; Lucas, M.S.; Pirra, A.J.; Peres, J.A. Treatment of concentrated fruit juice wastewater by the combination of biological and chemical processes. J. Environ. Sci. Health Part A 2012, 47, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Tristán, C.; Fallanza, M.; Ibáñez, R.; Ortiz, I. Reverse Electrodialysis: Potential Reduction in Energy and Emissions of Desalination. Appl. Sci. 2020, 10, 7317. [Google Scholar] [CrossRef]
- Căprărescu, S.; Zgârian, R.G.; Tihan, G.T.; Purcar, V.; Eftimie Totu, E.; Modrogan, C.; Chiriac, A.-L.; Nicolae, C.A. Biopolymeric Membrane Enriched with Chitosan and Silver for Metallic Ions Removal. Polymers 2020, 12, 1792. [Google Scholar] [CrossRef] [PubMed]
- Căprărescu, S.; Modrogan, C.; Purcar, V.; Dăncilă, A.M.; Orbuleț, O.D. Study of Polyvinyl Alcohol-SiO2 Nanoparticles Polymeric Membrane in Wastewater Treatment Containing Zinc Ions. Polymers 2021, 13, 1875. [Google Scholar] [CrossRef]
- Wang, K.; Abdalla, A.A.; Khaleel, M.A.; Hilal, N.; Khraisheh, M.K. Mechanical properties of water desalination and wastewater treatment membranes. Desalination 2017, 401, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Ravereau, J.; Fabre, A.; Brehant, A.; Bonnard, R.; Sollogoub, C.; Verdu, J. Ageing of polyvinylidene fluoride hollow fiber membranes in sodium hypochlorite solutions. J. Membr. Sci. 2016, 505, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xiao, C.; Hu, X.; Zhang, Z. Characterization of membranes prepared from PVDF/PAN blends and their modification with hydrolysis. High Perform. Polym. 2012, 25, 165–173. [Google Scholar] [CrossRef]
- Teella, A.; Zydney, A.L.; Zhou, H.; Olsen, C.; Robinson, C. Effects of chemical sanitization using NaOH on the properties of polysulfone and polyethersulfone ultrafiltration membranes. Biotechnol. Prog. 2015, 31, 90–96. [Google Scholar] [CrossRef]
- Prisciandaro, M.; Innocenzi, V.; Tortora, F.; Mazziotti di Celso, G. Reduction of Fouling and Scaling by Calcium Ions on an UF Membrane Surface for an Enhanced Water Pre-Treatment. Water 2019, 11, 984. [Google Scholar] [CrossRef] [Green Version]
- Mikdam, A.; Colin, X.; Minard, G.; Billon, N.; Maurin, R. A kinetic model for predicting the oxidative degradation of additive free polyethylene in bleach desinfected water. Polym. Degrad. Stab. 2017, 146, 78–94. [Google Scholar] [CrossRef]
- Robinson, S.; Bérubé, P.R. Membrane ageing in full-scale water treatment plants. Water Res. 2020, 169, 115212. [Google Scholar] [CrossRef]
- Rabuni, M.F.; Nik Sulaiman, N.M.; Aroua, M.K.; Hashim, N.A. Effects of Alkaline Environments at Mild Conditions on the Stability of PVDF Membrane: An Experimental Study. Ind. Eng. Chem. Res. 2013, 52, 15874–15882. [Google Scholar] [CrossRef]
- Maneewan, P.; Sajomsang, W.; Singto, S.; Lohwacharin, J.; Suwannasilp, B.B. Fouling mitigation in an anaerobic membrane bioreactor via membrane surface modification with tannic acid and copper. Environ. Pollut. 2021, 291, 118205. [Google Scholar] [CrossRef] [PubMed]
- Dodson, B. The Weibull Analysis Handbook; ASQ Quality Press: Milwaukee, WI, 2006. [Google Scholar]
- O’Connor, P.T.D.; Kleyner, A. Practical Reliability Engineering, 5th ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Arkhangelsky, E.; Kuzmenko, D.; Gitis, N.V.; Vinogradov, M.; Kuiry, S.; Gitis, V. Hypochlorite Cleaning Causes Degradation of Polymer Membranes. Tribol. Lett. 2007, 28, 109–116. [Google Scholar] [CrossRef]
- LeClech, P. Development of Predictive Tools for Membrane Ageing; IWA Publishing: London, UK, 2013. [Google Scholar]
- Yang, Y.; Lohwacharin, J.; Takizawa, S. Hybrid ferrihydrite-MF/UF membrane filtration for the simultaneous removal of dissolved organic matter and phosphate. Water Res. 2014, 65, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Lohwacharin, J.; Takizawa, S. Analysis of adsorption processes of dissolved organic matter (DOM) on ferrihydrite using surrogate organic compounds. Environ. Sci. Pollut. Res. 2017, 24, 21867–21876. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Park, J.; Cho, K.H. Real-time monitoring the spatial distribution of organic fouling using fluorescence imaging technique. J. Membr. Sci. 2020, 597, 117778. [Google Scholar] [CrossRef]
- Lohwacharin, J.; Takizawa, S. Effects of nanoparticles on the ultrafiltration of surface water. J. Membr. Sci. 2009, 326, 354–362. [Google Scholar] [CrossRef]
- Saniei, N.; Ghasemi, N.; Zinatizadeh, A.A.; Zinadini, S.; Ramezani, M.; Derakhshan, A.A. Preparation and characterization of a novel antifouling nano filtration poly ethersulfone (PES) membrane by embedding goethite-tannic acid nanoparticles. Sep. Purif. Technol. 2020, 241, 116646. [Google Scholar] [CrossRef]
- Puspitasari, V.; Granville, A.; Le-Clech, P.; Chen, V. Cleaning and ageing effect of sodium hypochlorite on polyvinylidene fluoride (PVDF) membrane. Sep. Purif. Technol. 2010, 72, 301–308. [Google Scholar] [CrossRef]
- Boccaccio, T.; Bottino, A.; Capannelli, G.; Piaggio, P. Characterization of PVDF membranes by vibrational spectroscopy. J. Membr. Sci. 2002, 210, 315–329. [Google Scholar] [CrossRef]
- Boributh, S.; Chanachai, A.; Jiraratananon, R. Modification of PVDF membrane by chitosan solution for reducing proteinmfouling. J. Membr. Sci. 2009, 342, 97–104. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Wu, Z.; Zhou, Q.; Yang, D. Effect of hypochlorite cleaning on the physiochemical characteristics of polyvinylidene fluoride membranes. Chem. Eng. J. 2010, 162, 1050–1056. [Google Scholar] [CrossRef]
- Abdullah, S.Z.; Bérubé, P.R. Filtration and cleaning performances of PVDF membranes aged with exposure to sodium hypochlorite. Sep. Purif. Technol. 2018, 195, 253–259. [Google Scholar] [CrossRef]
- Antón, E.; Álvarez, J.R.; Palacio, L.; Prádanos, P.; Hernández, A.; Pihlajamäki, A.; Luque, S. Ageing of polyethersulfone ultrafiltration membranes under long-term exposures to alkaline and acidic cleaning solutions. Chem. Eng. Sci. 2015, 134, 178–195. [Google Scholar] [CrossRef]
- Xu, Z.; Li, L.; Wu, F.; Tan, S.; Zhang, Z. The application of the modified PVDF ultrafiltration membranes in further purification of Ginkgo biloba extraction. J. Membr. Sci. 2005, 255, 125–131. [Google Scholar] [CrossRef]
- Hashim, N.A.; Liu, Y.; Li, K. Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem. Eng. Sci. 2011, 66, 1565–1575. [Google Scholar] [CrossRef]
- Mark, H.F. Encyclopedia of Polymer Science and Technology; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Robinson, S.; Abdullah, S.Z.; Bérubé, P.; Le-Clech, P. Ageing of membranes for water treatment: Linking changes to performance. J. Membr. Sci. 2016, 503, 177–187. [Google Scholar] [CrossRef]
- Judd, S. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment; Elsevier Ltd.: Oxford, UK, 2011. [Google Scholar]
Parameter | Water A | Water B |
---|---|---|
TSS a (mg/L) | 240 | 240–250 |
TDS b (mg/L) | 3200 | 3200 |
COD c (mg/L) | 4000 | 4000 |
Tannic acid (mg/L) | 100 | 100 |
Iron oxide | - | 10 mg/L as Fe2O3 |
pH (buffered) | 7.50 | 7.50 |
Hollow-Fiber MF Membrane | Before Hydrolysis (Virgin Membrane) | After Hydrolysis (Soaking in NaOH 2.5 wt.% for 2 Weeks) |
---|---|---|
Tensile strength (MPa) | 6.11 ± 0.2 | 5.46 ± 0.23 |
Elongation (%) | 50.80 ± 3.4 | 39.2 ± 7.2 |
Tensile Strength Decay (% of the Initial Value) | Predicted Lifetime (Years) | |
---|---|---|
MF | UF | |
10 | 5.1 | 1.8 |
30 | >5.1 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chheang, M.; Hongprasith, N.; Ratanatawanate, C.; Lohwacharin, J. Effects of Chemical Cleaning on the Ageing of Polyvinylidene Fluoride Microfiltration and Ultrafiltration Membranes Fouled with Organic and Inorganic Matter. Membranes 2022, 12, 280. https://doi.org/10.3390/membranes12030280
Chheang M, Hongprasith N, Ratanatawanate C, Lohwacharin J. Effects of Chemical Cleaning on the Ageing of Polyvinylidene Fluoride Microfiltration and Ultrafiltration Membranes Fouled with Organic and Inorganic Matter. Membranes. 2022; 12(3):280. https://doi.org/10.3390/membranes12030280
Chicago/Turabian StyleChheang, Mariny, Narapong Hongprasith, Chalita Ratanatawanate, and Jenyuk Lohwacharin. 2022. "Effects of Chemical Cleaning on the Ageing of Polyvinylidene Fluoride Microfiltration and Ultrafiltration Membranes Fouled with Organic and Inorganic Matter" Membranes 12, no. 3: 280. https://doi.org/10.3390/membranes12030280
APA StyleChheang, M., Hongprasith, N., Ratanatawanate, C., & Lohwacharin, J. (2022). Effects of Chemical Cleaning on the Ageing of Polyvinylidene Fluoride Microfiltration and Ultrafiltration Membranes Fouled with Organic and Inorganic Matter. Membranes, 12(3), 280. https://doi.org/10.3390/membranes12030280