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Abstract: This work presents the fabrication of polymer electrolyte membranes (PEMs) that are made
of polyvinyl alcohol-methylcellulose (PVA-MC) doped with various amounts of ammonium iodide
(NH4I). The structural and electrical properties of the polymer blend electrolyte were performed
via the acquisition of Fourier Transform Infrared (FTIR) and electrical impedance spectroscopy
(EIS), respectively. The interaction among the components of the electrolyte was confirmed via the
FTIR approach. Electrical impedance spectroscopy (EIS) showed that the whole conductivity of
complexes of PVA-MC was increased beyond the addition of NH4I. The application of EEC modeling
on experimental data of EIS was helpful to calculate the ion transport parameters and detect the
circuit elements of the films. The sample containing 40 wt.% of NH4I salt exhibited maximum ionic
conductivity (7.01 × 10−8) S cm−1 at room temperature. The conductivity behaviors were further
emphasized from the dielectric study. The dielectric constant, ε′ and loss, ε′′ values were recorded at
high values within the low-frequency region. The peak appearance of the dielectric relaxation analysis
verified the non-Debye type of relaxation mechanism was clarified via the peak appearance of the
dielectric relaxation. For further confirmation, the transference number measurement (TNM) of the
PVA-MC-NH4I electrolyte was analyzed in which ions were primarily entities for the charge transfer
process. The linear sweep voltammetry (LSV) shows a relatively electrochemically stable electrolyte
where the voltage was swept linearly up to 1.6 V. Finally, the sample with maximum conductivity, ion
dominance of tion and relatively wide breakdown voltage were found to be 0.88 and 1.6 V, respectively.
As the ions are the majority charge carrier, this polymer electrolyte could be considered as a promising
candidate to be used in electrochemical energy storage devices for example electrochemical double-
layer capacitor (EDLC) device.
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1. Introduction

In the near future, there is predicted to be a rapid increase in the need for energy
storage devices like supercapacitors, fuel cells, portable electronics, batteries, sensors, etc.
To meet this requirement, an alternative component as a major function of energy storage
and energy production has been intensively studied [1–3]. Polymer electrolytes (PEs) have
been intensively investigated due to their unique applications and their importance in
theoretical studies in domains of energy storage and electrochemistry [4]. Solid state coor-
dinated compounds in the form of polymer electrolytes with improved ionic conductivity
can be utilized as solid membranes [5]. Focus on solid polymer electrolytes extensively
and intensively have been looked at since the outstanding work carried out by Wright et al.
and Armand et al. [6]. Polymer electrolytes (PEs) are made up of alkali metal salts with a
low dissociation energy that are dissolved in polar polymers and used in electrochemical
devices [7]. Bio-based polymers (BBPs) have increased in popularity as powerful alterna-
tives to conventional polymers as a result of a significant amount of research. This is due to
the wide utilization of these materials in electrochemical devices as ways of solving global
concerns. These bio-based polymers can be extracted naturally from living organisms [8].
There is agreement that polymer electrolytes with the appropriate conductivity should be
developed for use as separators in electrochemical devices because of having relatively
high ionic conductivity as intrinsic properties of SPEs [9,10].

Two forms of polyvinyl alcohol (PVA) polymer have been familiarized with; pure
polymer [11–13] and blended polymer containing polyvinyl pyrrolidone [14], arginine [15]
and carboxymethyl cellulose [16]. To modify the properties of these classes of electrolytes,
PVA is one of the suitable polymers, having the capability to receive modifications. More-
over, PVA possesses desired properties, for instance, sufficient charge storing capability,
satisfactory strength, non-toxicity, and semi-crystalline [17–19]. Biopolymers are natural
polymers that can be available in various kinds of sources. Biopolymers are often affordable,
abundant in nature, have good solvent compatibility, and are very stable when creating a
film [20–22]. A number of studies on biopolymers, e.g., carrageenan, chitosan (CS), gelatin,
chitin, dextran, starch, and cellulose have all been identified as polymer hosts with ionic
conductivity ranging from 10−5 to 10−3 S cm−1 [23–25].

Herein, methylcellulose (MC) is an example of a natural biopolymer that consists
of a methyl substituent that is attached to a linear chain of glucose via β-(1,4)-glycosidic
bond [26]. This type of polymer enriches oxygen atoms that contain lone pairs of electrons;
thereby, it has enough polarity [27]. In other words, MC possesses amphiphile property
as a consequence of existing two heads: hydrophobic polysaccharide and hydrophilic
carboxylic functional group [28].

Nowadays, polymer blends have been under intensive investigation. This can be
correlated to the possibility of modifying polymer materials by forming polymer blends. It
is important to notice that the properties of the blended polymers are not only different
from individual components, but are also much better [29]. This kind of polymer is a
mixture that is physically mixed with characteristic structures. These physically mixed
polymers contain secondary forces; in other words, there is no existence of covalent bonding
where the components of the blended polymers are in interaction at the molecular level [30].
In previous work, it has been confirmed that improvement in conductivity of a polymer
electrolyte is possible if the host polymer is blended with another one. The blending process
of polymers can provide structural stability [29].

In this field, the usage of single MC-based electrolytes has been reported [31–33].
Blending (mixing) potato starch [34], maize starch [35], and chitosan [36] have been doc-
umented. The MC possesses several desired properties, for instance, biocompatibility,
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thermal stability, mechanical strength, and non-toxicity [37]. To be utilized in electrochem-
ical energy devices, the conductivity of a PE has to be achieved first in order to decide
whether it is eligible or not. The conductivity of the polymer electrolyte can successfully
be improved via either involvement of salt or plasticizer [38,39]. For this purpose, lithium
ions have been added because of their small size; however, the ion itself is unsafe to
surroundings after releasing because of its non-biodegradability and also it is one of the
expensive ions [40]. Shamsuri et. al., [41] fabricated polymer blend electrolyte systems
based on PVA-MC doped with various quantities of ammonium thiocyanate (NH4SCN).
They discovered that blending PVA and MC polymers and ammonium salts improved the
ionic conductivity by up to 10−4 S/cm. In SPEs as a field of condensed matter physics, both
the charge transport process and ion relaxation are the most intense subjects [42]. Many
studies have shown that ammonium salts have good polymer electrolyte characteristics
with increased ion dissociation, in addition to decreasing environmental pollution caused
by the use of lithium salts. Furthermore, because of their ability to attain high ionic con-
ductivity while maintaining good compatibility and thermal stability, ammonium salts
are commonly used in the development of polymer electrolyte systems. Additionally, the
lattice energy of NH4I is 605.3 kJ/mol, showing a significant degree of salt dissociation
into ions [43–46]. Buraidah and Arof [47] have employed ammonium iodide (NH4I) as an
electrolyte, claiming that it increased ionic conductivity over other ammonium salts. Based
on the transference number measurement (TNM) result, ions are the majority charge carrier
in the polymer electrolyte, which confirms its application in electrochemical energy storage
devices, for example, electrochemical double-layer capacitor (EDLC) devices.

The purpose of this work is to use AC impedance spectroscopy to investigate the
conductivity and relaxation mechanisms involved with ion transport. The electrical and
dielectric characteristics of materials are studied using this technique. In addition, the
investigation of the ion transport process and relaxation process in PVA:MC electrolytes
has been prioritized.

2. Materials and Methods
2.1. Sample Preparation

Poly (vinyl) alcohol (PVA)and methylcellulose (MC) with average molecular weights
of 35,000 g/mol and 4000 cP, respectively, were provided by Sigma Aldrich and used as raw
materials. Ammonium iodide (NH4I) salt was used as an H+ ion provide provider. The
above raw materials were used to synthesize PVA:MC:NH4I polymer electrolyte samples
using the solution casting method. For this purpose, 80 wt.% of PVA polymer was dissolved
in 30 mL of distilled water (DW) at 80 ◦C. Then, 20 wt.% of MC polymer was dissolved
in 30 mL of DW at room temperature (RT) for 3 h. The PVA solution was cooled down to
RT. Then, MC and PVA polymers solutions were combined with a magnetic stirrer. After
that, 10 to 50 wt.% in step of 10 of NH4I was poured to the PVA:MC solution and stirred
constantly to prepare PVA:MC:NH4I. The samples with (10, 20, 30, 40, and 50) wt.%
NH4I were coded as PMCVE1, PMCVE2, PMCVE3, PMCVE4, and PMCVE5, respectively.
Finally, the solutions of polymer electrolytes were inserted into Petri dishes and then left to
evaporate regularly at RT to fabricate PVA:CS:NH4I blend SPE film.

2.2. Measurements

The impedance of the films was measured using electrical impedance spectroscopy
(EIS) using HIOKI 3532-50 LCR HiTESTER at the frequency between 50 Hz and 5000 kHz
at RT. The films were inserted between two stainless steel (SS) electrodes and then the
impedance of the samples was measured. The ionic conductivity and dielectric properties
of the films were measured using the EIS method. Equation (1) was used in measuring
ionic conductivity:

σdc =

(
1

Rb

)
×
(

t
A

)
(1)
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where; t is the thickness and A is the area of the films. The Rb is the bulk resistance of the
electrolyte, which is measured by the intersection between spike and real axis.

The linear sweep voltammetry (LSV) at a scan rate of 10 mV/s was used to measure
the breakdown voltage of the film using Digi-IVY DY2300 potentiostat. The transference
number measurement (TNM) for ions and electrons was measured using a digital DC
power supply and V&A Instrument DP3003 at 0.2 V operating voltage at RT. Thermo
Scientific/Nicolet iS10 FTIR spectrophotometer was utilized to measure the FTIR spectra of
the films in the range between 4000–400 cm−1 with a resolution of 2 cm−1.

3. Results and Discussion
3.1. Impedance Analysis

Electrochemical impedance spectroscopy (EIS) has been widely employed in the study
of electrochemical behavior, as well as ion transference, in a variety of ionic materials, such
as electrodes and polymer electrolytes (PEs) [48–52].

The impedance spectra for the CPE films were produced and evaluated using this
approach (see Figure 1a–e). For all situations, a semicircle was formed in the high frequency
area due to the CPEs bulk effect, and a tail was obtained in the low frequency zone.
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Figure 1. Complex plots of impedance spectra for the PVA-MC blend polymers containing (a) 10wt.%;
(b) 20 wt.%; (c) 30 wt.%; (d) 40 wt.%; and (e) 50 wt.% of NH4I.

Additionally, there was an incomplete semicircle at the higher frequency that is related
mainly to the bulk properties (bulk resistance) of the materials. At the low frequency, there
is a spike, indicating the presence of double layer capacitance at the electrode/sample in-
terfacial region [53,54]. The establishment of the EDLC from the free charges accumulation
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at the electrode and electrolyte interface causes a spike (tail) in the low frequency [55]. A
spike is visible in all other samples.

The electrical equivalent circuit (EEC) model has been utilized to examine the EIS,
displaying the whole system under investigation [56]. The Nyquist plots for all systems
may be calculated using the EEC, which includes the Rb for the carrier species in PE systems
and two constant phase elements (CPE), as illustrated in Figure 1.

On the one hand, the connection of the constant phase element and Rb in parallel is
clearly seen at the high frequency. On the other hand, only constant phase element is seen
at the low frequencies, supporting the formation of EDLC at the interfacial region. The
constant phase elements term is often used in EEC in place of an ideal capacitor is usually
used in the real system.

The Nyquist plot for the PEs was shown in terms of the EEC. It contains two constant
phase elements (CPE) and Rb as exhibited in the insert of Figure 1. As a result of charge
buildup at the electrolyte-electrode interface, there are both constant phase elements and
Rb and in parallel at high frequencies and just constant phase elements at low frequencies.

The impedance of ZCPE is shown as [57–59]:

ZCPE =
1

Cωp

[
cos
(πp

2

)
− i sin

(πp
2

)]
(2)

where C is the capacitance of the constant phase element, p is the degree of deviation of the
EIS plots from the vertical axis, and ω is the angular frequency. The EEC is represented by
the real (Zr) and imaginary (Zi) components of complex impedance (Z*) (insert of Figure 1a)
and the mathematical basis are shown in Equations (3) and (4):

Zr =
R2

bC1ωp1 cos
(πp1

2
)
+ Rb

2RbC1ωp1 cos
(πp1

2
)
+ Rb

2C1
2ω2p1 + 1

+
cos
(πp2

2
)

C2ωp2 (3)

Zi =
R2

bC1ωp1 sin
(πp1

2
)

2RbC1ω
p1 cos

(πp1
2
)
+ Rb

2C1
2ω2P1 + 1

+
sin
(πp2

2
)

C2ωp2 (4)

C1 is the capacitance of the constant phase element in bulk, while C2 is the capacitance
of the constant phase element. The fitting parameters for the EEC and DC conductivity
values are listed in Tables 1 and 2, respectively. The Rb is calculated by intercepting the
real and spike axes [60]. Figure 2 shows polymer electrolyte structure and proposed ion
conduction mechanism in the PVA:MC:NH4I electrolyte system.

Table 1. The values of the circuit elements for the PMCVE electrolyte systems.

Sample p1 (rad) p2 (rad) CPE1 (F−1) CPE2 (F−1)

PMCVE1 0.92 1.18 × 10−10

PMCVE2 0.91 0.40 1.33 × 10−10 4.08 × 10−7

PMCVE3 0.86 0.38 1.61 × 10−10 4.55 × 10−7

PMCVE4 0.90 0.52 1.67 × 10−10 5.00 × 10−7

PMCVE5 0.86 0.48 1.69 × 10−10 5.56 × 10−7

Table 2. Ionic conductivity and bulk resistance values for the PMCVE electrolyte systems.

Sample Rb (Ω) σdc (S/cm)

PMCVE1 8.80 × 106 1.75 × 10−9

PMCVE2 2.20 × 105 7.01 × 10−8

PMCVE3 3.90 × 105 3.95 × 10−8

PMCVE4 2.80 × 105 5.51 × 10−8

PMCVE5 3.80 × 105 4.06 × 10−8
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Figure 2. H+ conduction mechanism in PVA:MC:NH4I electrolyte system.

As the impedance data is composed of a semicircle and a spike, the number density (n),
diffusion coefficient (D), and mobility of ions are measured using the following relations.

The D is measured using Equation (5):

D =

(
(K2εoεr A)2

τ2

)
(5)

where τ2 is the angular frequency reciprocal and corresponds to the minimum in Zi.
The µ is measured using Equation (6),

µ =

(
eD

KbT

)
(6)

where T is the absolute temperature and kb is the constant of Boltzmann.
Since conductivity (σdc) is measured by

σdc = neµ (7)

So, the n is measured using Equation (8):

n =

(
σdcKbTτ2

(eK2εoεr A)2

)
(8)

Based on Table 1, the D value is increased from 10 wt.% to 40 wt.% of the NH4I salt. The
same trend is observed by µ as seen in Table 3 where µ increased. This increment is related to
the increase of the flexibility of the chains of the polymer with the addition of the salt.

Table 3. The values of the ionic transport parameters for the PMCVE electrolyte systems.

Sample D (cm2 s−1) µ (cm2 V−1 s) n (cm−3)

PMCVE1
PMCVE2 3.55 × 10−9 1.38 × 10−7 3.16 × 1018

PMCVE3 9.41 × 10−10 3.67 × 10−8 6.73 × 1018

PMCVE4 1.18 × 10−9 4.61 × 10−8 7.45 × 1018

PMCVE5 3.17 × 10−10 1.24 × 10−8 2.05 × 1019

3.2. FTIR Study

The composition, structure, and potential interaction between the functional groups of
MC and PVA in PVA:MC blend films may all be studied using Fourier transform infrared
(FTIR) spectroscopy. It is also used to look at how the blended PVA:MC interacts with
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the NH4I salt, as evidenced by changes in the location, intensity, and shape of the IR
transmittance bands in the 400 to 4000 cm−1 range. The FTIR spectra of blended PVA:MC
polymer after mixing with various weight percent of NH4I are shown in Figure 3 within
the specified range.
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Figure 3. FTIR spectra illustrated the pure PVA-MC blend (0.6:0.4) and PVA:MC loaded with (a) 10,
(b) 20, (c) 30, (d) 40, and (e) 50 wt.%: NH4I salt.

It is evidenced that there are interactions between the salt and the polymer matrix,
creating a complex system. It is seen that when the interaction occurs between the PVA:MC
and ammonium iodide, the peaks disappear. This verifies the complexation of the macro-
molecular salt successfully. The C=O, CH2, C-H, C-O, and O-H bonds have characteristic
bands for MC and PVA [50]. Therefore, any change is considered as evidence of the com-
patibility between the components of the system. The increase of the amorphous structure
in the blend of PVA:MC is another element of the salt’s entry into the polymer matrix. The
vibrational peak at a wavenumber of ~3000 cm−1 correlates to the O-H stretching. From
Figure 3, it is seen that the OH bands become broader accompanied by intensity attenuation
of the peaks for the PVA:MC system, indicating an extent of crystallinity [61–63].

There is a shift in the hydroxyl group’s (-OH) absorption frequency as a result of the
complex development between the NH4I and the host polymer. The stretching band at
1709 cm−1 is connected to the C=O stretching of carboxylic groups.

The carboxylic groups in the films can create intramolecular or intermolecular hy-
drogen bonds with either OH groups or carboxylic groups [64]. Complete complexation
among the salt cations and polymer functional groups is indicated by a reduction in the
intensity of transmittance and a shift in band position. The vibration within the polar group
decreases as a consequence of the electrostatic interaction between the functional group
and the salt cation [64,65]. Shifting in peak position primarily indicates that the state of
electron distribution or hybridization in the molecular bond has changed. Attenuation in
the peak intensity often shows that the number of functional groups associated with the
molecular bond (per unit volume) decreases [66].

The bands that appear at the wavenumber of ~2900 cm−1 correspond to the (C-H)
stretching, while they disappeared at the high content of added salt. Additionally, the bands
located at ~1650 for the PMCVE1, PMCVE2, and PMCVE3 are due to (C=O) stretching. It is
noticeable that the intensity of the bands of (C=O) stretching is significantly decreased in
the PMCVE3, and PMCVE5 samples, respectively.
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3.3. Dielectric Properties

It is well-known that the dielectric constant is one of the best indicators for studying
and evaluating the conductivity of polymer electrolytes [67]. Both axes of the spectrum are
indicators of specific properties.

The dielectric constant (ε′) determines polarization or dipole alignment is proportional
to capacitance, whereas dielectric loss (ε′′) represents dielectric loss linked to conductance
and reflects the amount of energy required for dipole alignment [68]. The finding of the
growth of ion pair creation from the aggregation of dissolved ion pairs is fundamentally and
technologically significant since such formations might impair electrical conductivity [69].

Just recall that Equations (9) and (10) are used to determine both the ε′ and ε′′ of the
dielectric permittivity.

εr =
Zi

ω Co(Zr2 + Zi
2)

(9)

εi =
Zr

ωCo(Zr2 + Zi
2)

(10)

Here, Co is the vacuum capacitance and equal to εoA/t (where t and A are the thickness
and area of the sample, respectively), andω is the angular frequency and equal to = 2πf.

At low frequency, both the ε′ and ε′′ are relatively high, as shown in Figures 4 and 5,
as is likely to occur for the blend electrolyte samples.
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The polarization of space charge or charge buildup at the electrode-electrolyte interface
can be linked to these high reported values of two parameters [70].

In contrast, at the high frequency, the values are relatively low because of the respon-
sibility of the bulk property. It is worth noting that decreasing the frequency of applied
electric field (EF) lengthens the charge carrier’s available drift time.
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This results in increasing the values of the dielectric constant and dielectric loss as
well [66]. At the high-frequency region, a quick periodic reversal of the EF occurs, resulting
in no allowance of excess ions diffusion in the EF direction. Additionally, polarization
decreases as a consequence of the charge accumulation at the interfacial region; thereby,
shrinking occurs and becomes frequency independent [71]. At the 40 wt.% of NH4I insertion
into the polymer matrices, the maximum dielectric constant value was recorded. The fact
that amorphous areas predominate in the system can be linked to the growth of the ε′ and
ε′′ [72,73].

More attractive notice is the relatively high value of dielectric loss compared to the
value of ε′, as clearly seen in Figures 4 and 5. This is due to two variables, dielectric polar-
ization processes and DC conduction, both contributing to increasing dielectric loss [72].

3.4. Tangent Delta Analysis

The dissipation factor is defined as the loss tangent (tan δ). It is the energy loss to
energy store ratio in a periodic field that may be calculated using Equation (4).

In order to comprehend the relaxation of dipoles in polymer electrolytes, it is critical to
define dielectric relaxation. As the concentration of NH4I is raised up to 40%, the maximum
tangent is likely to move to the higher frequency area (Figure 6).

In polymer electrolytes with high electrical conductivity, the polarization of charge
carriers in the materials causes relaxation, which leads to the disappearance of dielectric
relaxation peaks caused by induced dipole or permanent dipole.

Figure 6 illustrates the loss tangent variation over a range of frequencies for various
solid polymer electrolytes. It is obviously seen that the single relaxation peak is considered
as a fingerprint of ionic conduction throughout the polymer body via segmental motion of
the chains [74,75]. It is of great importance to interpret the loss tangent shape on the basis
of the model of Koops phenomenological. However, in the homogeneous systems, the low
frequency dispersion curve negative slope indicates that loss is dominated by conduction
at low frequency within a parallel RC circuit. As the frequency is raised, the loss tangent
rises, indicating a maximum at a certain frequency as a result of a fast ascend in the active
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component (ohmic) relative to the reactive component (capacitive). This indicates that
the current’s active component is fundamentally and efficiently working [76,77]. At high
frequency, the loss tangent decreases as frequency increases.
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The active component of the current is frequency independent, while the reactive
component is directly proportional to frequency. As a result of the presence of several
non-Debye relaxation processes, the loss tangent peaks become broader.

These interpretations are based on EEC fitting of experimentally obtained impedance
data that shows a shift of the peak to the higher frequency. It is also deduced that a decrease
in the relaxation time is ascribed to carrier mobility increasing. The bond breakdown
originating from the dipoles is reflected by a boost in band intensity [75,76].

The mobility, carrier density, and diffusion coefficient are three key factors for eval-
uating the ion transport phenomena, as previously stated. Finally, utilizing the single
relaxation peak of tanδ spectra as shown in Figure 6, the relaxation time (τ = 1/2 πfmax) may
be determined [78].

The electric modulus has been used to study the dielectric response induced by
ion relaxation in which the electrode polarization effects are reduced, i.e., highlight tiny
characteristics at high frequencies [79]. The following equations link the real and imaginary
components of electric modulus to impedance values [80,81],

M′ = ω CoZi (11)

M′′ = ω CoZr (12)

The plots of the frequency-dependence real and imaginary parts of the electrical modulus,
(Mr and Mi), were shown in Figures 7 and 8, respectively. At lower frequencies, the plot of the
real component of modulus spectra shows a low value. This can be explained by the high
capacitance connected with the electrodes, which promotes ion conduction migration.
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The Mr exhibits dispersion as the frequency is increased. This supports the samples’
non-Debye behavior [82]. Figure 8 depicts the imaginary section of modulus spectra.

The electric modules (M′ and M′′) have a minimal value at low frequencies because
they are reciprocals of the complex dielectric constant.

The use of the M-formalism for studying electrical relaxation processes has recently
been reported in the literature [83]. M′′ has an asymmetrical shape, indicating that Debye’s
basic exponential is insufficient to characterize the relaxation. Figure 8 shows the peaks of
conductivity relaxation.

From a physics standpoint, the relaxation peak in M′′ (Figure 8) and with no peaks in
the ε′′ (see Figure 5) has some significance.

It indicates that in polymer electrolytes, conduction occurs by ion charge movement
across coordinated sites of the polymer, as well as segmental relaxation, that is appearance
of peaks in M′′ spectra confirm that ionic motion and polymer segmental motion are strongly
coupled [84,85]. It can be seen that the relaxation peak shifted to the side of low frequency with
increasing PVA. This means that when the concentration of PVA rises, so does the relaxing
time. The decrease in ionic mobility is linked to an increase in relaxation time [59].

At low salt concentrations, conductivity relaxation peaks can be seen. With increasing
NH4I concentration, the relaxation peak changed to the side of high frequency.

This means that when the concentration of NH4I rises the relaxation time (τo = 1/ωmax)
reduces.

The increase in ionic mobility in the amorphous phase of the electrolytes sample leads
to a reduction in relaxation time. The electrical characteristics are well supported by the
XRD findings [54].

3.5. Transference Number Measurements TNM

In PE systems both electrons and ions are responsible for carrying electric charges.
It is critical to have a PE with a high ti and low te in order to qualify it for use in EDLC
applications. The energy storage mechanism in the EDLC is carried out by ions adsorbing
and desorbing on the surface of carbon electrons at a specific interface area. After exposing
the samples to an operating voltage of 0.8 V, the TNM analysis for the PE was conducted.

Figures 9 and 10 show the response of polarization within the PVA-MC blend polymer
containing 40 wt.% and 50 wt.% NH4I, respectively. After the perturbation of the systems
by applying charge transfer occurs via ion and electrons together towards the electrodes
resulting in a high Ii of 2.5 µA for 40 wt.% and 1.4 µA for 50 wt.% of the salt. As time lasts,
ion movement is blocked at the surface of SS, causing current flow lowering. It is important
to notice that a current plateau is recorded beyond 50 s at 0.25 µA for 40 wt.% and 0.7 µA
for 50 wt.%. This state is the so called steady-state in which the PE is now is completely
under polarization. Only electrons can pass through the SS electrode in the steady-state.
This is a property of an ionic conductor that occurs when electrons are transferred [86].
From the following equations, ti and te can be obtained:

tion =
Ii − ISS

Ii
(13)

tion = 1− tel (14)

here, tion and tel indicate the symbols for ion transport and electron transfer, respectively, Ii
indicates the initial current, which comprises both electrons and ions, and Iss means the
steady-state current, which only covers electrons. It was seen that tion is 0.88 for 40 wt.% of
NH4I while it drops to 0.56 for 50 wt.% of the salt. The values for ti and te are 0.964 and
0.036, respectively. For Mg(CH3COO)2, Mg(NO3)2, and MgCl2, the ti is 0.95 [87–89].
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Figure 9. The polarization curve of current against time for the PVC-MC polymer containing 40 wt.%
of salt.
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3.6. Linear Sweep Voltammetry (LSV)

Linear sweep voltammetry (LSV) recording is useful in determining the potential
stability of the PE which was carried out at a 20 mVs−1 sweep rate. The potential stability
of the PE is necessary technologically. This is because of the rapid charge-discharge process
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in energy devices, leading to degrading of the PE. It is imperative to have a wide potential
wide of PE in order to avoid decomposition during operation. It is straightforward to
record LSV for the PE that will be utilized in the supercapacitors, fuel cells, solar cells and
batteries [90,91]. Figure 11 shows the recorded potential-current profile that swept linearly
up to 3.5 V. It is noted that the PE is stable at potential <1.6 V, which is determined from the
huge current rise at this potential.
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Figure 11. The LSV plot for the highest conducting sample.

As the voltage is changed from 2.1 to 2.5 V, the dramatic current increases from 0.01 to
0.41 mA cm−2, which can be observed more clearly. To put it another way, the huge current
increase implies that the polymer is degrading [92].

4. Conclusions

Descriptively, the fabrication of polymer electrolyte (PE) comprised a blending process
of the solid polymer electrolytes (SPEs) polyvinyl alcohol- methylcellulose (PVA-MC)
loaded with various quantities of ammonium iodide (NH4I). Fourier Transform Infrared
(FTIR) study confirmed a strong interaction between the electrolyte components of polymer
matrix PVA-MC and the ionic dopant (NH4

+ and I−). It has been proved that there is an
effective complexation and compatibility between the components of PE. The blending can
be confirmed from the peak shifting and peak intensity attenuation via the FTIR test. It is
concluded that the structural disorder is caused effectively by the addition of NH4I. It is
also deduced that the substantial rise in ionic conductivity values resulted from the salt
addition. The highest conductivity of 7.01 × 10−8 S cm−1 was measured for the sample
loaded with 40 wt.% NH4I. The EEC modeling on experimental data of EIS was helpful
to calculate the ion transport parameters and detect the circuit elements of the films. The
transport parameters of µ, n, and D were increased with the salt increment till 40 wt.% of
NH4I. The trend of DC conductivity was described with the help of dielectric properties.
The highest conducting electrolyte displays the ion dominancy where the tion is 0.88. It was
shown by the LSV that the potential stability of the electrolyte is 1.6 V.
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