Optimization and Evaluation of Polymer Inclusion Membranes Based on PVC Containing Copoly-EDVB 4% as a Carrier for the Removal of Phenol Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Transport Equipment
2.2. Preparation of the PIM
2.3. Phenol Transport
2.3.1. Effect of pH in the Source Phase
2.3.2. Effect of NaOH Concentration
2.3.3. Effect of Time
2.3.4. Transport Kinetics
2.4. Evaluation of the Ability and Resistance of PIMs
2.4.1. Effect of Plasticizer Concentration
2.4.2. Effect of Salt Concentration
2.4.3. Lifetime PIM Membrane
3. Results and Discusion
3.1. Phenol Transport
3.1.1. Effect of pH of the Source Phase
3.1.2. Effect of NaOH Concentration
3.1.3. Influence of Transportation Time
3.2. Transport Kinetics
3.3. Evaluation of the Ability and Resistance of PIM Membranes
3.3.1. Effect of Plasticizer Concentration
3.3.2. Effect of Salt Concentration
3.3.3. Lifetime PIM Membrane
3.4. PIM Membrane Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nghiem, L.D.; Mornane, P.; Potter, I.D.; Perera, J.M.; Cattrall, R.W.; Kolev, S.D. Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Membr. Sci. 2006, 281, 7–41. [Google Scholar] [CrossRef]
- Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Membr. Sci. 2012, 415–416, 9–23. [Google Scholar] [CrossRef]
- Croft, C.F.; Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Separation of lanthanum (III), gadolinium (III) and ytterbium (III) from sulfuric acid solutions by using a polymer inclusion membrane. J. Membr. Sci. 2018, 545, 259–265. [Google Scholar] [CrossRef]
- Bonggotgetsakul, Y.Y.N.; Cattrall, R.W.; Kolev, S.D. A method for coating a polymer inclusion membrane with palladium nanoparticles. React. Funct. Polym. 2015, 97, 30–36. [Google Scholar] [CrossRef]
- Chaouqi, Y.; Ouchn, R.; Eljaddi, T.; Jada, A.; El, M. New polymer inclusion membrane containing NTA as carrier for the recovery of chromium and nickel from textiles wastewater. Mater. Today-Proc. 2019, 13, 698–705. [Google Scholar] [CrossRef]
- Kaya, A.; Onac, C.; Alpoguz, H.K.; Yilmaz, A.; Atar, N. Removal of Cr(VI) through calixarene based polymer inclusion membrane from chrome plating bath water. Chem. Eng. J. 2016, 283, 141–149. [Google Scholar] [CrossRef]
- O’Bryan, Y.; Truong, Y.B.; Cattrall, R.W.; Kyratzis, I.L.; Kolev, S.D. A new generation of highly stable and permeable polymer inclusion membranes (PIMs) with their carrier immobilized in a crosslinked semi-interpenetrating polymer network. Application to the transport of thiocyanate. J. Membr. Sci. 2017, 529, 55–62. [Google Scholar] [CrossRef]
- Sellami, F.; Kebiche-senhadji, O.; Marais, S.; Couvrat, N. Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal of Cr (VI): Efficiency, stability and selectivity. React. Funct. Polym. 2019, 139, 120–132. [Google Scholar] [CrossRef]
- Turgut, H.I.; Eyupoglu, V.; Kumbasar, R.A.; Sisman, I. Alkyl chain length dependent Cr(VI) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co-HFP as polymer matrix. Sep. Purif. Technol. 2017, 175, 406–417. [Google Scholar] [CrossRef]
- Wang, D.; Hu, J.; Liu, D.; Chen, Q.; Li, J. Selective transport and simultaneous separation of Cu(II), Zn(II) and Mg(II) using a dual polymer inclusion membrane system. J. Membr. Sci. 2017, 524, 205–213. [Google Scholar] [CrossRef]
- Benosmane, N.; Boutemeur, B.; Hamdi, S.M.; Hamdi, M. Removal of phenol from aqueous solution using polymer inclusion membrane based on mixture of CTA and CA. Appl. Water Sci. 2018, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Kiswandono, A.A.; Siswanta, D.; Aprilita, N.H.; Santosa, S.J. Transport of phenol through inclusion polymer membrane (PIM) using copoly(eugenol-DVB) as membrane carriers. Indones. J. Chem. 2012, 12, 105–112. [Google Scholar] [CrossRef]
- Kiswandono, A.K.; Mudasir Siswanta, D.; Aprilita, N.H.; Santosa, S.J.; Hadi, S. Synthesis and characterization of co-edaf and its application test as a carrier membrane for phenol transport using polymer inclusion membrane (PIM). Res. J. Chem. Environ. 2019, 23, 1–9. [Google Scholar]
- Kiswandono, A.K.; Mudasir Siswanta, D.; Aprilita, N.H.; Santosa, S.J.; Hadi, S. Synthesis of a new crosslinked Poly-Bisphenol A Diglycidyl Ether (Poly-BADGE) as a carrier in Phenol transport. Kuwait J. Sci. 2020, 47, 39–48. [Google Scholar]
- Ling, Y.Y.; Mohd Suah, F.B. Extraction of malachite green from wastewater by using polymer inclusion membrane. J. Environ. Chem. Eng. 2017, 5, 785–794. [Google Scholar] [CrossRef]
- Suah, F.B.M.; Ahmad, M. Preparation and characterization of polymer inclusion membrane based optode for determination of Al3+ion. Anal. Chim. Acta 2017, 951, 133–139. [Google Scholar] [CrossRef]
- Cho, Y.; Cattrall, R.W.; Kolev, S.D. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water. J. Hazard. Mater. 2018, 341, 297–303. [Google Scholar] [CrossRef]
- Kiswandono, A.A.; Siswanta, D.; Aprilita, N.H.; Santosa, S.J.; Hayashita, T. The Capability of Copoly (Eugenol-Divinylbenzene), Co-EDVB as a Carrier of Phenol Transport with Polymer InclusionMembrane (PIM). J. Environ. Friendly Proc. 2014, 2, 57–68. [Google Scholar] [CrossRef]
- Pérez-Silva, I.; Galán-Vidal, C.A.; Ramírez-Silva, M.T.; Rodríguez, J.A.; Álvarez-Romero, G.A.; Páez-Hernández, M.E. Phenol Removal Process Development from Synthetic Wastewater Solutions Using a Polymer Inclusion Membrane. Ind. Eng. Chem. Res. 2013, 52, 4919–4923. [Google Scholar] [CrossRef]
- Meng, X.; Gao, C.; Wang, L.; Wang, X.; Tang, W.; Chen, H. Transport of phenol through polymer inclusion membrane with N,N-di(1-methylheptyl) acetamide as carriers from aqueous solution. J. Membr. Sci. 2015, 493, 615–621. [Google Scholar] [CrossRef]
- Benosmane, N.; Hamdi, S.M.; Hamdi, M.; Boutemeur, B. Selective transport of metal ions across polymer inclusion membranes (PIMs)containing calix[4]resorcinarenes. Sep. Purif. Technol. 2009, 65, 211–219. [Google Scholar] [CrossRef]
- Asrami, M.R.; Saien, J. Salt Effects on Liquid−Liquid Equilibria of Water + Phenol + (Propan-2-yl) Benzene + Salts Systems. J. Chem. Eng. Data 2019, 64, 2414–2422. [Google Scholar] [CrossRef]
- Correia, P.F.M.M.; de Carvalho, J.M.R. Salt Effects on the Recovery of Phenol by Liquid-Liquid Extraction with Cyanex 923. Sep. Sci. Technol. 2005, 40, 3365–3380. [Google Scholar] [CrossRef]
- Zha, F.F.; Fane, A.G.; Fell, C.J.D. Instability mechanisms of supported liquid membranes in phenol transport process. J. Membr. Sci. 1995, 107, 50–74. [Google Scholar] [CrossRef]
- Zhang, B.; Gozzelino, G.; Baldi, G. Membrane liquid loss of supported liquid membrane based on n-decanol. Colloids Surf. A 2001, 193, 61–70. [Google Scholar] [CrossRef]
- Zhenga, H.D.; Wang, B.Y.; Wub, X.X.; Rena, Q.L. Instability mechanisms of supported liquid membranes for copper (II) ion extraction. Colloids Surf. A 2009, 351, 38–45. [Google Scholar] [CrossRef]
- Danesi, P.R. Separation of metal species by supported liquid membranes. Sep. Sci. Technol. 1984, 19, 857–894. [Google Scholar] [CrossRef]
- Takeuchi, H.; Nakano, M. Progressive wetting of supported lquid membranes by aqueous solutions. J. Membr. Sci. 1983, 42, 183–188. [Google Scholar] [CrossRef]
Transport Time (h) | Flux Value (J) L/m2 h |
---|---|
3 | 13.27 |
5 | 7.96 |
9 | 4.42 |
12 | 3.31 |
24 | 1.65 |
48 | 0.83 |
72 | 0.553 |
t (h) | t (s) | [C]t ppm | [C]0 ppm | |
---|---|---|---|---|
3 | 10,800 | 14.0 | 60 | −0.851 |
5 | 18,000 | 24.0 | 60 | −0.706 |
9 | 32,400 | 32.0 | 60 | −0.6865 |
12 | 43,200 | 33.0 | 60 | −0.599 |
24 | 86,400 | 37.0 | 60 | −0.457 |
48 | 172,800 | 42.0 | 60 | −0.295 |
72 | 259,200 | 43.0 | 60 | −0.155 |
Day | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 52 | 60 | >60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[Salt] | pH | ||||||||||||
0 M | 5.50 | 6.5 | 6.87 | 7.27 | 7.86 | 8.57 | 8.90 | 9.27 | - | - | - | - | - |
NaNO3 0.01 M | 5.50 | 6.35 | 6.86 | 7.52 | 7.62 | 8.07 | 8.45 | 8.62 | 8.77 | 8.89 | 8.9 | 9.2 | - |
NaCl 0.01 M | 5.50 | 5.62 | 7.44 | 7.50 | 7.71 | 7.90 | 8.37 | 8.75 | 8.9 | 9.1 | - | - | - |
NaNO3 0.1 M | 5.50 | 6.59 | 7.32 | 7.52 | 7.74 | 7.81 | 7.88 | 8.12 | 8.3 | 8.5 | 8.6 | 8.8 | 9.0 |
NaCl 0.1 M | 5.50 | 5.68 | 7.15 | 7.32 | 7.45 | 7.58 | 7.70 | 7.91 | 8.0 | 8.2 | 8.3 | 8.5 | 8.9 |
[NaNO3] M | PIM Membrane | |||
---|---|---|---|---|
Mass (g) | ML Loss (g) | ML Loss(%) | ||
Before | After | |||
0.001 M | 0.4595 | 0.365 | 0.0945 | 21 |
0.01 M | 0.4765 | 0.382 | 0.0945 | 20 |
0.1 M | 0.4649 | 0.382 | 0.0829 | 18 |
1 M | 0.432 | 0.371 | 0.061 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiswandono, A.A.; Nusantari, C.S.; Rinawati, R.; Hadi, S. Optimization and Evaluation of Polymer Inclusion Membranes Based on PVC Containing Copoly-EDVB 4% as a Carrier for the Removal of Phenol Solutions. Membranes 2022, 12, 295. https://doi.org/10.3390/membranes12030295
Kiswandono AA, Nusantari CS, Rinawati R, Hadi S. Optimization and Evaluation of Polymer Inclusion Membranes Based on PVC Containing Copoly-EDVB 4% as a Carrier for the Removal of Phenol Solutions. Membranes. 2022; 12(3):295. https://doi.org/10.3390/membranes12030295
Chicago/Turabian StyleKiswandono, Agung Abadi, Candra Saka Nusantari, Rinawati Rinawati, and Sutopo Hadi. 2022. "Optimization and Evaluation of Polymer Inclusion Membranes Based on PVC Containing Copoly-EDVB 4% as a Carrier for the Removal of Phenol Solutions" Membranes 12, no. 3: 295. https://doi.org/10.3390/membranes12030295
APA StyleKiswandono, A. A., Nusantari, C. S., Rinawati, R., & Hadi, S. (2022). Optimization and Evaluation of Polymer Inclusion Membranes Based on PVC Containing Copoly-EDVB 4% as a Carrier for the Removal of Phenol Solutions. Membranes, 12(3), 295. https://doi.org/10.3390/membranes12030295