The Effect of Submicron Polystyrene on the Electrokinetic Potential of Cell Membranes of Red Blood Cells and Platelets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Domestic Pig Blood
2.1.2. Polymers
2.2. Methods
2.2.1. Isolation of Erythrocytes from Blood
2.2.2. Isolation of Thrombocytes from Plasma
2.2.3. Comparison of Different Polymers by FTIR Spectroscopy
2.2.4. Determination of Polymers Size
2.2.5. Determination of Zeta Potential
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Polymers Used in the Study
3.2. The Effect of Polystyrene Polymers on the Zeta Potential of Morphotic Components of Pig Blood
3.2.1. The Effect of Polystyrene Polymers Concentration
3.2.2. The Effect of the Exposure Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ELS | Electrophoretic light scattering |
DLS | Dynamic light scattering |
FTIR | Fourier transform infrared |
ζ | Zeta potential (electrokinetic potential) |
PDI | Polydispersity index |
PS | Polystyrene particles |
PS-100 | 100 nm polystyrene particles |
PS-200 | 200 nm polystyrene particles |
PS-NH2-100 | 100 nm polystyrene particles with amino groups |
PS-NH2-200 | 200 nm polystyrene particles with amino groups |
RBC | Red blood cells (erythrocytes) |
Platelets (thrombocytes) |
References
- Kazemi, M.; Fini, E.H. State of the art in the application of functionalized waste polymers in the built environment. Resour. Conserv. Recycl. 2022, 177, 105967. [Google Scholar] [CrossRef]
- Lai, J.H. Polymers for Electronic Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Puoci, F. Advanced Polymers in Medicine, 1st ed.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Manivannan, B.; Eltzov, E.; Borisover, M. Submicron polymer particles may mask the presence of toxicants in wastewater effluents probed by reporter gene containing bacteria. Sci. Rep. 2021, 11, 7424. [Google Scholar] [CrossRef] [PubMed]
- Kik, K.; Bukowska, B.; Sicińska, P. Polystyrene Nanoparticles: Sources, Occurrence in the Environment, Distribution in Tissues, Accumulation and Toxicity to Various Organisms. Environ. Pollut. 2020, 262, 114297. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, W. Biocatalytic recycling of polyethylene terephthalate plastic. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190273. [Google Scholar] [CrossRef]
- Fotopoulou, K.N.; Karapanagioti, H.K. Degradation of Various Plastics in the Environment. In Hazardous Chemicals Associated with Plastics in the Marine Environment; Takada, H., Karapanagioti, H., Eds.; The Handbook of Environmental Chemistry Series; Springer: Cham, Switzerland, 2017; Volume 78. [Google Scholar]
- Roohi; Bano, K.; Kuddus, M.; Zaheer, M.R.; Zia, Q.; Khan, M.F.; Ashraf, G.M.; Gupta, A.; Aliev, G. Microbial enzymatic degradation of biodegradable plastics. Curr. Pharm. Biotechnol. 2017, 18, 429–440. [Google Scholar] [CrossRef]
- Urbanek, A.K.; Rymowicz, W.; Mirończuk, A.M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-S.; Brandon, A.M.; Andrew Flanagan, J.C.; Yang, J.; Ning, D.; Cai, S.-Y.; Fan, H.-Q.; Wang, Z.-Y.; Ren, J.; Benbow, E. Biodegradation of polystyrene wastes in yellow mealworms. Chemosphere 2018, 191, 979–989. [Google Scholar] [CrossRef]
- Iqbal, S.; Xu, J.; Allen, S.D.; Khan, S.; Nadir, S.; Arif, M.S.; Yasmeen, T. Unraveling consequences of soil micro- and nano-plastic pollution on soil-plant system: Implications for nitrogen (N) cycling and soil microbial activity. Chemosphere 2020, 260, 127578. [Google Scholar] [CrossRef]
- Blettler, M.C.M.; Abrial, E.; Khan, F.R.; Sivri, N.; Espinola, L.A. Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps. Water Res. 2018, 143, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Haward, M. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nat. Commun. 2018, 9, 667. [Google Scholar] [CrossRef] [Green Version]
- Cook, C.R.; Halden, R.U. Ecological and health issues of plastic waste. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 513–527. [Google Scholar]
- Frydkjær, C.K.; Iversen, N.; Roslev, P. Ingestion and egestion of microplastics by the cladoceran daphnia magna: Effects of regular and irregular shaped plastic and sorbed phenanthrene. Bull. Environ. Contam. Toxicol. 2017, 99, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Muradov, M.; Kot, P.; Ateeq, M.; Abdullah, B.; Shaw, A.; Hashim, K.; Al-Shamma’a, A. Real-time detection of plastic shards in cheese using microwave-sensing technique. Proceedings 2019, 42, 54. [Google Scholar]
- Rehse, S.; Kloas, W.; Zarfl, C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of daphnia magna. Chemosphere 2016, 153, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Jemec, A.; Horvat, P.; Kunej, U.; Bele, M.; Kržan, A. Uptake and effects of microplastic textile fibers on freshwater crustacean daphnia magna. Environ. Pollut. 2016, 219, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, M.F.; Ruvinsky, A. The Genetics of the Pig, 2nd ed.; C.A.B. International: Wallingford, UK, 2011. [Google Scholar]
- Vodička, P.; Smetana, K.; Dvořánková, B.; Emerick, T.; Xu, Y.Z.; Ourednik, J.; Ourednik, V.; Motlík, J. The miniature pig as an animal model in biomedical research. Ann. N. Y. Acad. Sci. 2005, 1049, 161–171. [Google Scholar] [CrossRef]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J.; Frazier, K.S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef]
- Aigner, B.; Renner, S.; Kessler, B.; Klymiuk, N.; Kurome, M.; Wünsch, A.; Wolf, E. Transgenic pigs as models for translational biomedical research. J. Mol. Med. 2010, 88, 653–664. [Google Scholar] [CrossRef]
- Bradbury, A.G.; Argyle, S.; Eddleston, M.; Clutton, R.E. Prophylactic use of antimicrobials in surgical pig models; a literature review. Vet. Res. 2015, 177, 16–21. [Google Scholar]
- Campisi, C.C.; Jiga, L.P.; Ryan, M.; di Summa, P.G.; Campisi, C.; Ionac, M. Mastering lymphatic microsurgery: Anew training model in living tissue. Ann. Plast. Surg. 2017, 79, 298–303. [Google Scholar] [CrossRef]
- Henze, L.J.; Koehl, N.J.; O’Shea, J.P.; Kostewicz, E.S.; Holm, R.; Griffin, B.T. The pig as a preclinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms: A pearrl review. J. Pharm. Pharmacol. 2019, 71, 581–602. [Google Scholar] [CrossRef] [Green Version]
- Bures, J.; Kvetina, J.; Radochova, V.; Tacheci, I.; Peterova, E.; Herman, D.; Dolezal, R.; Kopacova, M.; Rejchrt, S.; Douda, T. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS ONE 2020, 15, e0227781. [Google Scholar] [CrossRef]
- Peng, L.; Fu, D.; Qi, H.; Lan, C.Q.; Yu, H.; Ge, C. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Sci. Total Environ. 2020, 698, 13425. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lu, J.; Du, M.; Xu, X.; Beiyuan, J.; Sarkar, B.; Bolan, N.; Xu, W.; Xu, S.; Chen, X.; et al. Particulate plastics-plant interaction in soil and its implications: A review. Sci. Total Environ. 2021, 792, 148337. [Google Scholar] [CrossRef] [PubMed]
- Beriot, N.; Zomer, P.; Zornoza, R.; Geissen, V. A laboratory comparison of thei interactions between three plastic mulch types and 38 active substances found in pesticides. PeerJ 2020, 8, e9876. [Google Scholar] [CrossRef] [PubMed]
- Clukey, K.E.; Lepczyk, C.A.; Balazs, G.H.; Work, T.M.; Lynch, J.M. Investigation of plastic debris ingestion by four species of sea turtles collected as bycatch in pelagic pacific longline fisheries. Mar. Pollut. Bull. 2017, 120, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Markic, A.; Gaertner, J.-C.; Gaertner-Mazouni, N.; Koelmans, A.A. Plastic ingestion by marine fish in the wild. Crit. Rev. Environ. Sci. Technol. 2020, 50, 657–697. [Google Scholar] [CrossRef]
- Choi, D.; Hwang, J.; Bang, J.; Han, S.; Kim, T.; Oh, Y.; Hwang, Y.; Choi, J.; Hong, J. In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis. Sci. Total Environ. 2021, 752, 142242. [Google Scholar] [CrossRef]
- Marsalek, R.; Kotyrba, M.; Volna, E.; Jarusek, R. Neural network modelling for prediction of zeta potential. Mathematics 2021, 9, 3089. [Google Scholar] [CrossRef]
- Naumowicz, M.; Zając, M.; Kusaczuk, M.; Gál, M.; Kotyńska, J. Electrophoretic light scattering and electrochemical impedance spectroscopy studies of lipid bilayers modified by cinnamic acid and its hydroxyl derivatives. Membranes 2020, 10, 343. [Google Scholar] [CrossRef]
- Wang, M.L.; Hauschka, P.V.; Tuan, R.S.; Steinbeck, M.J. Exposure to Particles Stimulates Superoxide Production by Human THP-1 Macrophages and Avian HD-11EM Osteoclasts Activated by Tumor Necrosis Factor-α and PMA. J. Arthroplast. 2002, 17, 335–346. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.; Gu, W.; Yu, J.; Wu, B. Influence of the digestive process on intestinal toxicity of polystyrene microplastics as determined by in vitro Caco-2 models. Chemosphere 2020, 256, 127204. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wu, X.; Liu, S.; Wang, Z.; Chen, L. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 2019, 221, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Xuan, Y.; Li, Q. Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Sci. China Technol. Sci. 2010, 53, 3088–3093. [Google Scholar] [CrossRef]
- Joseph, E.; Singhvi, G. Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. In Nanomaterials for Drug Delivery and Therapy; Grumezescu, A.M., Ed.; William Andrew Publishing: Amsterdam, The Netherlands, 2019; pp. 91–116. [Google Scholar]
- Silva, D.C.N.; Jovino, C.N.; Silva, C.A.L.; Fernandes, H.P.; Filho, M.M.; Lucena, S.C.; Costa, A.M.D.N.; Cesar, C.L.; Barjas-Castro, M.L.; Santos, B.S. Optical tweezers as a new biomedical tool to measure zeta potential of stored red blood cells. PLoS ONE 2012, 7, e31778. [Google Scholar] [CrossRef] [Green Version]
- Godin, C.; Caprani, A. Effect of blood storage on erythrocyte/wall interactions: Implications for surface charge and rigidity. Eur. Biophys. J. 1997, 26, 175–182. [Google Scholar] [CrossRef]
- Durocher, J.R.; Payne, R.C.; Conrad, M.E. Role of sialic acid in erythrocyte survival. Blood 1975, 45, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Bai, J.; Jiang, X.; Nienhaus, G.U. Cellular uptake of nanoparticles by membrane penetration: Astudy combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 2012, 6, 1251–1259. [Google Scholar] [CrossRef]
- Jiang, X.; Dausend, J.; Hafner, M.; Musyanovych, A.; Röcker, C.; Landfester, K.; Mailänder, V.; Nienhaus, G.U. Specific effects of surface amines on polystyrene nanoparticles in their interactions with mesenchymal stem cells. Biomacromolecules 2010, 11, 748–753. [Google Scholar] [CrossRef]
- Dwivedi, M.V.; Harishchandra, R.K.; Koshkina, O.; Maskos, M.; Galla, H.-J. Size influences the effect of hydrophobic nanoparticles on lung surfactant model systems. Biophys. J. 2014, 106, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Chambers, E.; Mitragotri, S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release 2004, 100, 111–119. [Google Scholar] [CrossRef]
- Chambers, E.; Mitragotri, S. Long circulating nanoparticles via adhesion on red blood cells: Mechanism and extended circulation. Exp. Biol. Med. 2007, 232, 958–966. [Google Scholar]
- Rothen-Rutishauser, B.M.; Schürch, S.; Haenni, B.; Kapp, N.; Gehr, P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ. Sci. Technol. 2006, 40, 4353–4359. [Google Scholar] [CrossRef] [PubMed]
- Geiser, M.; Rothen-Rutishauser, B.; Kapp, N.; Schürch, S.; Kreyling, W.; Schulz, H.; Semmler, M.; Im Hof, V.; Heyder, J.; Gehr, P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 2005, 113, 1555–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunicki, T.J. Platelet membrane glycoproteins and their function: An overview. Blut 1989, 59, 30–34. [Google Scholar] [CrossRef]
- Smyth, E.; Solomon, A.; Vydyanath, A.; Luther, P.K.; Pitchford, S.; Tetley, T.D.; Emerson, M. Induction and enhancement of platelet aggregation in vitro and in vivo by model polystyrene nanoparticles. Nanotoxicology 2015, 9, 356–364. [Google Scholar] [CrossRef]
- Nemmar, A.; Hoylaerts, M.F.; Hoet, P.H.M.; Dinsdale, D.; Smith, T.; Xu, H.; Vermylen, J.; Nemery, B. Ultrafine Particles affect experimental thrombosis in an in vivo hamster model. Am. J. Respir. Crit. Care Med. 2002, 166, 998–1004. [Google Scholar] [CrossRef]
- McGuinnes, C.; Duffin, R.; Brown, S.; Mills, L.N.; Megson, I.L.; MacNee, W.; Johnston, S.; Lu, S.L.; Tran, L.; Li, R.; et al. Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol. Sci. 2011, 119, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Oslakovic, C.; Cedervall, T.; Linse, S.; Dahlbäck, B. Polystyrene nanoparticles affecting blood coagulation. Nanomedicine 2012, 8, 981–986. [Google Scholar] [CrossRef]
Polymer | Size by Number [nm] | SD | Size by Intensity [nm] | SD | PDI | Zeta Potential [mV] | SD |
---|---|---|---|---|---|---|---|
PS-100 | 119.90 | 47.04 | 197.40 | 76.24 | 0.257 | −31.00 | 0.99 |
PS-200 | 185.70 | 67.86 | 249.40 | 86.00 | 0.205 | −46.10 | 2.11 |
PS-NH2-100 | 110.10 | 34.01 | 160.70 | 58.50 | 0.231 | −24.90 | 1.20 |
PS-NH2-200 | 207.90 | 54.82 | 238.40 | 57.04 | 0.055 | −28.60 | 1.32 |
pH | Control | 0.002 | 0.01 | 0.1 | 0.5 |
---|---|---|---|---|---|
3 | 6.07 ± 0.19 | 6.86 ± 0.98 | 9.97 ± 0.65 a,b | 11.68 ± 0.86 a,b,c | 13.72 ± 0.90 a,b,c,d |
4 | −4.44 ± 0.50 | −0.02 ± 1.65 a | 6.85 ± 0.67 a,b | 10.35 ± 0.67 a,b,c | 3.23 ± 0.75 a,b,c,d |
5 | −7.15 ± 1.28 | −2.37 ± 0.52 a | 0.00 ± 0.83 a,b | 0.86 ± 1.00 a,b | −3.78 ± 1.31 a,c,d |
6 | −8.20 ± 0.51 | −7.03 ± 0.45 | −8.53 ± 0.91 | −11.06 ± 1.22 a,b,c | −10.49 ± 0.39 a,b,c |
7 | −8.51 ± 1.13 | −7.12 ± 0.60 | −9.31 ± 0.30 | −11.88 ± 1.82 a,b,c | −14.58 ± 0.75 a,b,c,d |
8 | −8.89 ± 0.64 | −8.15 ± 0.75 | −10.24 ± 0.94 | −14.34 ± 1.28 a,b,c | −14.54 ± 1.32 a,b,c |
9 | −10.15 ± 0.98 | −8.43 ± 1.16 | −10.43 ± 0.64 | −15.42 ± 1.20 a,b,c | −16.12 ± 0.71 a,b,c |
10 | −9.81 ± 0.79 | −9.41 ± 0.52 | −11.88 ± 0.66 a,b | −16.72 ± 0.90 a,b,c | −16.96 ± 0.38 a,b,c |
11 | −10.97 ± 1.08 | −12.84 ± 0.80 | −13.76 ± 1.41 a | −17.34 ± 1.45 a,b,c | −16.58 ± 0.86 a,b,c |
12 | −10.86 ± 0.73 | −14.74 ± 0.82 a | −17.26 ± 0.70 a,b | −18.84 ± 0.68 a,b | −17.34 ± 1.36 a,b |
pH | Control | 0.002 | 0.01 | 0.1 | 0.5 |
---|---|---|---|---|---|
3 | 8.40 ± 0.58 | 6.86 ± 0.98 | 9.97 ± 0.65 | 13.48 ± 1.07 b | 15.28 ± 0.89 a,b,c |
4 | 2.49 ± 0.77 | −0.02 ± 1.65 | 6.85 ± 0.67 a,b | 9.25 ± 1.62 a,b | 7.17 ± 0.93 a,b |
5 | −4.19 ± 0.85 | −2.37 ± 0.52 | 0.00 ± 0.83 a,b | −8.24 ± 1.00 a,b,c | −22.18 ± 1.82 a,b,c,d |
6 | −8.48 ± 1.72 | −7.03 ± 0.45 a | −8.53 ± 0.91 b | −10.78 ± 0.76 a,b,c | −21.14 ± 0.95 a,b,c,d |
7 | −8.35 ± 1.24 | −7.12 ± 0.60 | −9.31 ± 0.30 b | −13.10 ± 1.21 a,b,c | −22.48 ± 1.61 a,b,c,d |
8 | −9.42 ± 0.74 | −8.15 ± 0.75 | −10.24 ± 0.94 b | −15.10 ± 0.72 a,b,c | −22.40 ± 0.90 a,b,c,d |
9 | −11.20 ± 0.97 | −8.43 ± 1.16 a | −10.43 ± 0.64 | −14.68 ± 1.16 a,b,c | −21.98 ± 1.54 a,b,c,d |
10 | −10.48 ± 1.49 | −9.41 ± 0.52 | −11.88 ± 0.66 b | −17.30 ± 1.65 a,b,c | −22.98 ± 0.78 a,b,c,d |
11 | −10.76 ± 0.38 | −12.84 ± 0.80 a | −13.76 ± 1.41 a | −17.94 ± 0.61 a,b,c | −23.30 ± 1.03 a,b,c,d |
12 | −13.44 ± 1.08 | −14.74 ± 0.82 | −17.26 ± 0.70 a,b | −19.34 ± 0.15 a,b,c | −24.92 ± 1.16 a,b,c,d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zając, M.; Kotyńska, J.; Worobiczuk, M.; Breczko, J.; Naumowicz, M. The Effect of Submicron Polystyrene on the Electrokinetic Potential of Cell Membranes of Red Blood Cells and Platelets. Membranes 2022, 12, 366. https://doi.org/10.3390/membranes12040366
Zając M, Kotyńska J, Worobiczuk M, Breczko J, Naumowicz M. The Effect of Submicron Polystyrene on the Electrokinetic Potential of Cell Membranes of Red Blood Cells and Platelets. Membranes. 2022; 12(4):366. https://doi.org/10.3390/membranes12040366
Chicago/Turabian StyleZając, Marcin, Joanna Kotyńska, Mateusz Worobiczuk, Joanna Breczko, and Monika Naumowicz. 2022. "The Effect of Submicron Polystyrene on the Electrokinetic Potential of Cell Membranes of Red Blood Cells and Platelets" Membranes 12, no. 4: 366. https://doi.org/10.3390/membranes12040366
APA StyleZając, M., Kotyńska, J., Worobiczuk, M., Breczko, J., & Naumowicz, M. (2022). The Effect of Submicron Polystyrene on the Electrokinetic Potential of Cell Membranes of Red Blood Cells and Platelets. Membranes, 12(4), 366. https://doi.org/10.3390/membranes12040366